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Abstract. Varicella is a disease caused by the varicella-zooster virus. This disease is common in children
under 10 years of age and is not a fatal condition. However, some cases of varicella in adults are more
dangerous because they can cause pneumonia. Here, discussion about analysis of varicella epidemic model
is presented. This model is expressed in the form of 6th order differential equation with state variables
as follows susceptible, exposed, infected, quarantine, recovered, and vaccination. Apart vaccination and
isolation intervention, this model also consider disinfectant spray anjd ventilation. Our analysis shows that
varicella dynamic behavior depends on the basic reproduction number (Ro). The model has two equilibria,
namely, free disease and endemic equilibria. By using the Lyapunov function, we demonstrate that when
Ro<1, disease-free is globally asymptotically stable, and when Ro > 1 disease-free becomes unstable
while endemic is globally asymptotically stable. This results indicate more effective each intervention, the
better the control of varicella.

1. Introduction

Varicella (chickenpox) and zoster (shingles) are two diseases caused by the varicella-zoster virus (VZV)
[1]. Varicella or chickenpox is the primary manifestation of VZV infection and characterized by mild
headache, fever, malaise, aching muscle, loss of appetite, a feeling of nausea and an eruption of blisters
on the skin and mucous membranes [2]. Meanwhile, zoster or shingles are caused by the reactivation of
latent VZV. The reactivated virus is latent within dorsal root ganglia and goes to nerve cells and causes
neural damage [3]. In general, varicella is a mild disease and this disease occurs more frequently in
children. In The United Kingdom and Canada, many children under 15 years suffers by varicella, which
is about 85% for both in the United Kingdom and Canada [1]. Although varicella is a minor illness in
the primary infection, the superinfection that occurs could cause death, especially in adults [3]. Varicella
is a highly contagious disease that is transmitted by inhalation of saliva droplets dispersed in the air by
infected subjects or by direct contact with skin lesions of subjects with varicella or zoster [4]. Currently,
there is no specific treatment for varicella, the main prevention is to give vaccines, especially in school-
age children. Before the introduction of vaccination, varicella spread widely in Italy and The United
States. In The United States, there were about 4 million cases, 11.000-13.000 cases of hospitalization
and 100-150 deaths per year in early 1990s. After the first vaccines introduction, the number of cases
decreased 79% in the 2000-2005, and hospital admission and death decreased 90% in the same year [4].
This means that the use of vaccines is an effective way to reduce the varicella cases. Beside vaccination,
closure and isolation or spraying disinfection is needed to control the spread [5].
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In order to understand the transmission of varicella disease and to evaluate the control measure,
many authors developed mathematical model such as SIR model [6], SEIR epidemic dynamic model [7],
fractional MSEIR (maternally-derived immunity, susceptible, exposed, Infected, and recovered) model
[2] and also modified SEIR model including the cycle of shingles acquisition [§]. Some of these models
are equipped with simulations based on actual situation or curve fitting. In [7], authors didn’t discuss
analysis of mathematical model at all. Thus, the dynamic system behavior of this model is still not
understood. This motivate us to discuss of analysis of the mathematical model [7]. To make the model
more general, we extented the model by considering a recruitment factor and a natural death.

2. Model Formulation

Here, we consider the varicella model from previous work [7] where the human population is divided
into six compartments, i.e., susceptible (S5), exposed (F), infected (/), quarantine (()), recovered (R)
and vaccination (V). This grouping is based on their health status. Susceptible is a compartment
containing healthy people. Exposed is a compartment containing infected people who are not capable
infecting healthy people. This compartment indicates that the varicella virus requires an incubation
period. Infectious is a compartment containing infected people who are capable infecting healthy people.
Quarantine is a compartment containing isolated infected people. Quarantine or isolation are provided for
some infected people to reduce the rate of disease transmission and speed up recovery of those who are
sick. Recovered is a compartment containing recovering from the disease. Vaccination is a compartment
containing healthy people who have been vaccinated. This model considers three interventions such
as vaccination, isolation/quarantine, and finally ventilation and disinfectant spray. Each intervention is
represented by the parameters d, 1), and m whose values are in the interval (0,1). The transmission
process of varicella is illustrated by the following diagram.

uwS uwkE wl uwR

- C‘SD E wk

(1-06)(1-m)BST

0S5

©

nv @

Figure 1. Varicella transmission diagram
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This model is expressed in the following ordinary differential equation

S=A—-(1-81—-m)BIS—(u+6)S
E=01-0)(1-m)BIS—(u+w)E

[ =wB—(u+v+ (1=

- 6]
Q=9I —(n+7)Q
R=1-y¢)yI++Q—pR
V =68 —uV.
Suppose N is the total population. So,
N=S+E+I+Q+R+V. ()
Differentiate equation (3) respect to time give
N=S+E+I+Q+R+V=A-uN. 3)

. A
From the solution of equation (3), we have N - — ast — oc.

I
Thus, the system (1) the domain which has biological meaning as follows
5 A
Q=4(5,E,1,Q,R,V) € R | S+E+I+Q+R+V§E

and initial conditions
S(0)>0, £(0)>0,1(0)>0,Q(0)>0, R(0)>0,V(0)>0.

Explanation of all parameters in the model are provided at Table 1.

Table 1. List of parameters of the model

Parameters Description

The infection rate

The latency coefficient

The removal rate

Disinfection and ventilation efficiency
The vaccination coefficient

The isolation rate

The recruitment rate

The natural death rate

T e ™3I E®
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3. Basic Reproduction Number

The basic reproduction number, denoted by Ry, is a threshold parameter for disease growth in the
population. This parameter determines whether the disease will become extinct or persist in the
population. It is easy to show that the system (1) has the following zero solution

A §A
Ey=|—-,0,0,0,0,—— ) .
’ <u+5 u(u+5)>

E)y is called disease free equilibrium (DFE) that represent the disease is not exist in the population.
Here, we derive the formulation of basic reproduction number by following the method from [9]. Let
x=(F,1,5,Q,R,V), the system (1) can be rewritten in the following form

dx
= = — 4
= F(@) - V() 0
where F and V represents new infection terms and the transition terms, respectively. Hence, we obtain
[ (1 -6)S(1—m)BI ]| [ (W+w)E ]
wE (h+v+ 1 =)nI
F_ 0 v —A+(1-06)SBL—m)BI+ (u+9)S
0 ’ —UI+ (p+7)@Q
0 (1 =)y —Q + pR
i 0 | i —0S + uV |

The next step, we just consider the component F and V that contain infected and infectious. Evaluation
of Jacobian matrix F and V at Ej are given by

o A0-901-m)p
DF(Ey) = B0 and DV(Ep) = .
0 0 ~A=Y)y—p—9

The next generation matrix (NG M) is obtained as

—U—w 0

w

0 A(1-=90)(1—-m)p
NGM = DF(Eo) (DV(Eo) ™" = | (1 +0) (L =)y + p+1)
0
n+w
Basic reproduction number is formulated as radius spectral of NG M. Hence, we have

A(1-0)(1—m)Buw
(H+) (A =)y +p+9) (n+w)

For convenience in the next discussion, we will use an equivalent parameter, R, to basic reproduction
number where Ry = Rg. Thisimply Rg <1 <= Ro<land Ry >1 <= Ry > 1.

Ro=p(NGM) = \/ (5)

4. Existence of Endemic
Let By = (S*, E*, I*, R*,Q*, V*). This is an equilibrium point of system (1) if F; satisfy the following
equation
0=A—-(1-=06)(1—-—m)BS*T" — (u+6)S™
0=01-96)(1—-m)BS*I" — (un+w)E"
0=wE" = (u+¢+ 1 -
0=ol" = (p+7)Q"
0= =YnI"+71Q" — pR’
0=105"—puV=*.

(6)
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The first and third equation in (6) give solutions

A wE*
S = I = . 7
(L=8)(1-m)BI*+0+p L=y +u+y @)

Substitute (7) to the second equation in (6) yields

A (1= 8)(L—m)Bw— (u+08) (L= )y +p+9) (1 +w)
wB (L= )1 —m) (u+w)

Some of substitutions give other components of F; as follows

A(1=0)1-m)Bw—(p+0) (L =)y +p+9) (0 +w)
(A=) yp+A=t)yw+p?+pw+pd+wd)(1—-20)(1—-m)B
g W) (A —d)y+pu+y)

Bw(l—=46)(1—m)

E* =

Ir'=

e Bt @) (L =)yt ) ®
(1—6)(1—m)Bwn
g = 2¥ 190 -—m)fw -4 (p+9) (1 —Y)y+p+¢) (n+w)
BA=6)A—m)(pt+w)(v+p) (I=)y+p+y)
By using the formula (5), some of the components of £ can be expressed in Ry as follows
e _ O (L= )y +p+ ) (Ro— 1)
Bw(l=0)(1—m)
o (4 8)(Ro—1)
A= o)1 —m) o

o — )R —1)
AL =0)(1 —m)(p+7)
pro Yt (A=) (ut+y) +)(Bo —1)
Bu(l=6)(1 —m)(u+7)
In order to have a biological meaning, then the components of £ in the equation (9) is required become
positive. In other words, E; exist if Ry > 1. This point represents an endemic where the disease is
present for long term in the population, so that it is well knows as an endemic point.

5. Stability of Equilibria
In this section, we investigate the local stability of a disease free (Ey) and an endemic point (E1).
Evaluation of Jacobi matrix at Ey yields

T A6 -m)B 7
§—p 0 s 0 0 0
o Al -6)(1-—m)B
0 M s 0 0 0
J(Eo) = 0 w —(l=—p)y—p—1 0 0 0
0 0 P —y—u 0 0
0 0 (1—v)y vy —u 0
6 0 0 0 0 —u |
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with characteristic polynomial is given by
1
p(A) = m(A +)? A+ e+ )N+ p+ ) (a2)® + ar A + ao) (10)

where
az = (pu+0)
a1 = (p+06)2pn+w+Y+(1-19)y)
ap=-A1-0)1-m)Bw+ (u+38)(L-Y)y+p+¢)(ntw).

The eigenvalues of Jacobi matrix, J(Fy), are —u, —p — 6, —p — ~y and the roots of quadratic factor. By
using formula Ry, coefficient ag can be rewriten as follows

(h+0) (v +p+v)(n+w)(l—Ro) >0.

Clearly, if Ry < 1, the roots of quadratic factor are negative. Thus, we conclude if Ry < 1, the point Ej
locally asymptotically stable.
Next, we investigate the stability of the endemic point. Evaluation of Jacobi matrix at £ give

[ —I"(1—-6)(1—m)B—0—p 0 —S*(1—=46)(1 —m)p 0 0 0 7
I"(1-96)(1—m)p —n—w S*(1-0)(1-—m)p 0 0 0
0 w —I=9P)y—pn—9 0 0 0
J(Ey) =
0 0 P —v—u 0 0
0 0 cy ¥ —u 0
L 0 0 0 0 0 —u |
with characteristic polynomial
P(AN) = A+ 1) (A + i+ 7)(a3X® + agX® + a1\ + ao) (11)

where the coefficient a;, as, as and ag are given by
ag = 1
ay = I"(1-6)1-m)B+ecy+0+3p+w+
ap = I"1-0)1-m)B (1-¢)y+2p+w+)—(1-6)(1—-m)Bws*
+p+w) (I=v)y+2p+d)+ow+p (1—P)y+p+v)
ap = (1=0)1-m)B (p+w)((L=Y)y+p+¢)I"
+(n+0)(=(1=0)1-m)BwS*+ (k+w)((1 —¥)y+p+v)).

Equation (11) indicate eigenvalues of F/; are —u, —u—y and others is the roots of cubic factor. Substitute
S* in (8) to ag and a; yields

ar = (L= o)y +2p+w+ o) (I"(L—8)(L—m)B+ 35+ u)

a0 = (1= 8)(1 = m)B (4 +w) (1 =)y + p+ ) I*.

So, if Ry > 1, then all sign of ag, a; and as are positive. Now, observe that

(1=8)1-m)BI+d+pu>1=068)1—-—m)BI, 2u+w+v+(1—v)y>p+uw,
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and (1—-Y)y+¢v+d+3u+w> 1 —P)y+¢+p.
It follows

(L= )y +2u+w+) (I*B+5+p) (I*(1—8)(1 —m)B+ey+5+3p+w+1b)
> 1 =01 =m)BI" (n+w) (1 =)y +p+v)

or
asa1 > asag.

According to Routh Hurwitz criterion, that all eigenvalues are negative for cubic factor. Thus the point
Ej is locally asymptotically stable. The result is summarized in the following theorem If Ry < 1, then
Ey is locally asymptotically stable and if Ry > 1, then Ej is unstable and E; is locally asymptotically
stable.

6. Global Stability
In order to discuss the global stability of disease free equilibrium, E, we consider the Lyapunov function

Vi =

E+1. 12
itw) (12

Derivative of Lyapunov function respect to time a long solution of system (1) is given by

Vie 2 Fai
(1 + w)
= m (1=8)1=m)BSI — (p+w)E) + (wWE — (41 + cy)I) -
_(1=0)@1-—m)BSIw B
- (i +) (n+29+ 1 =)L

_ ( (1-6)(1—m)BSw

(n+w)(p+v+1—)y) _1> (n+v+ A=)l

, it follows

A
Due to S<
T )

. A(1-0)(1—m)fw
= <(M+5)(M+w)(ﬂ+¢+ -

Clearly, if Rp< 1, then vV <0. .
Now let X = (S, E,I,Q, R, V). In case V; = 0, observe the largest invariant set contained in

- 1) (4 (L= )7 = (Ro— 1)+ b+ (1— )T

(XeQ:Vi=0isQ={XecQ:T=0)}.

Since fact that Qg = Ej for Ry < 1, the according to LaSalle-Lyapunov Theorem [10], as t — oo, then
all trajectories starting in €2 toward to Ej.

In order to investigate global stability of endemic point, we consider the following Lyapunov function

E I
VeS—S —SmotE-F—nl (P (r-r—rml) (e
S+ E* w Iz
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Derivative V5 respect to time a long solution in system (1)

(o 59 (- 58) (22) (59

*

“A— (1= 8)(1—m)BST — (i +6)S — % (A — (1= 8)(1 —m)BST — (1 +)S)

*

+(1=0)(1—m)BSI — (u+w)E — % (1= 8)(1 — m)BSI — (u+ w)E)

B () v+ (o = (52 LB et vt (-9,
(15)

At equilibrium, we have
A=(1-0)1—-m)BS* I"+ (u+9)S* (16)

Substitution (16) to (15) give

Vo = (1—6)(1—m)BS* T + (u+8)S" — (u+8)S — (1—6)(1 m)gs*f*%
(08 + (1= 0)(1 —m)BIS® + (u+ 5)S* — (1= 5)(1~ m)BST— + (u+ )"
- (“:w> (n+v+ A=y - 17*(# +w)E + <MIM) (n+v+ Q=9I 17
Since
(L+v+(1—v)y) = WT?‘ (b+w) = S 6)(1E*m)ﬁs*l*7
we have

(1-8)(1—m)3 S"I (“j“) (it (L—)NI = ((1— )(1 —m)BS*T* — (i +w)E*) I'T = 0.
It follows

Vo= (1—=06)(1—m)BS*I* + (u+6)S* — (u+6)S

(181 m)BS*I*i — (u+ 5)5*SS F(p+0)8* — (1—6)1— m)BSI%

I (1-6)(1—m)BS"I"

+(1=8)(1—m)BS"T" = = =

E+(1-68)(1—m)BS*I* (18)
or

: - S* SIE* I'E . S g

Vi = (1—06)(1 —m)BS*T <3_5_S*I*E_IE)+(“+5)S (2—5*—3) (19)

By introducing function g(z) = 1 — x — In(x) which is monotone decreasing for = > 0. Hence, g(z)<0
for all z > 0. Then we can express inequality from (19) as follows

S$*  SIE* I'E
= )<
<3 S S I'E IE*) =0 (20)

S S*
(2 . S) <0. 1)

and
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Therefore, if Ry > 1, then V<0. Derivative Lyapunov function will be V =0if only if $ = S*, E =
E*,I = I*. Therefore, we conclude that the largest compact invariance set {(S, E,I) € Q | V =0} is
the singleton F;. Hence, LaSalle-Lyapunov Theorem [10] implies that F; is globally asymptotically
stable in 2. The result is summarized in the following theorem If Rp<1, then Ej is globally
asymptotically stable and if Ry > 1, then Ejy is unstable and F; is globally asymptotically stable.
Theorem 5 and theorem 6 indicate that the basic reproduction number (1) determine the dynamics
behavior of varicella. Based on the theorem, in order to eliminate the disease in the population, we
need to make the value of Ry is less than 1. Since the value of Ry is also influenced by the parameter
of interventions such as &, m and 1), thus we can say that the intervention of vaccination, isolation and
disinfectant spray and ventilation is important to control the varicella. Qualitatively, we can say the more
effective each intervention, the smaller the Ry value. This mean, the better the control of varicella. If in
practice, the intervention could make Ry < 1, theoretically the varicella would become extinct. On the
other hand, if Ry > 1, the varicella will become an endemic disease.

7. Conclusion

In this paper, we have analyzed a varicella model from previous work [7]. Our results show that basic
reproduction number (R¢) has play important role in the dynamics behavior of the the model. We found
two equilibria in this model, i.e., disease free and endemic. The existence and stability of equilibria
depend on Ry. Our analysis demonstrated that disease free is globally asymptotically stable if Rg <1
and endemic is globally asymptotically stable if g > 1. The rusults of our analysis are in accordance
with previous result [8] which showed that the dynamics behavior of varicella depend on Ry. Since
the value of Ry depend on the parameter interventions such as §, m and 1), then the results indicate that
interventions can control the varicella. To eradicate the varicella in the population, the intervention of
vaccination, isolation and ventilation and disinfectant spray should effective such that the value of Ry
less than one.
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