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Abstract. In this paper, we present the redefinition output approach for output tracking of
some classes of non-minimum phase nonlinear systems without and with uncertainty. Input-
Output linearization and gradient descent methods are applied to design the control. The good
result of this approach is demonstrated by 3 examples.

1. Introduction
A system is called non-minimum phase if a nonlinear state feedback can hold the system output
identically zero while the internal dynamics becomes unstable [1]. Output tracking problem
for nonlinear non-minimum phase systems is a rather difficult issue in control theory. Most
of researcher restrict their research to a special class nonlinear system only. The input-output
linearization is one of the most available methods [1] for minimum phase besides the modified
gradient descent control [2]. In this paper, both methods are applied to design control after
non-minimum phase nonlinear system is transformed to minimum phase by redefinition output
of the system. Results on stabilization of non-minimum phase system in the output feedback
form have been presented in [3], [4], [5]. The main idea in [3], [4], [5] is output reconstruction
such that the original nonlinear systems becomes minimum phase with respect to a new output.
Results on output tracking of some classes of non-minimum phase nonlinear system have been
presented in [6], [7]. In [6], The design of the input control is based on the exact linearization.

In this paper we give 3 examples to demonstrate how to track the output of the system
by redefinition output combine with input-output linearization or modified gradient descent
control. First example, the nonlinear system is assumed exact linearizable, the second example,
the nonlinear system has the relative degree is n − 1, n is the dimension of the system. The
third example, the nonlinear system has the relative degree is n−1 with uncertainty parameter.
For relative dgree is 1, Dimitar Ho and J.Karl Hedrick has done in [8].

http://creativecommons.org/licenses/by/3.0
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2. Problem Statement
Consider the following SISO affine nonlinear control system

ẋ = f(x, θ) + g(x, θ)u, (1)

y = h(x) (2)

where x ∈ Rn is the state vector, u ∈ R is the control input, y ∈ R is the measured output, and
θ is the parameter uncertainty. f : Rn → Rn is a smooth function with f(0) = 0, g : Rn → Rn
and h : Rn → R are smooth functions. Assume also that h(0) = 0. If the nonlinear system
(1)-(2) has relative degree r, (r < n) at x◦, by input-output linearization [1], the system (1)-(2)
can be transformed to

S =


∑
ext :

{
ξ̇k = ξk+1, k = 1, · · · , r − 1

ξ̇r = a(ξ, η, θ) + b(ξ, η, θ)u∑
int : η̇ = q(ξ, η, θ)

y = ξ1 = h(x),

(3)

with the internal dynamics ∑
int

: η̇ = q(ξ, η, θ). (4)

The stability of the internal state η is required to guarantee the output system y(t) tracks
the desired output yd(t). Our objective is to design input such that the output y(t) tracks the
desired output yd(t) while keeping the state bounded.

For case b(ξ, η, θ) 6= 0 for t ≥ 0, we apply input-output linearization method, i.e.,

ur =
1

b(z)
(−a(z) + v) , (5)

where z = [ξ1, · · · ξr, η1, · · · , ηn−r], v = c0z1 + c1ż2 + ·+ cnz
(n)
1 and the value of ci; i = 0, · · ·n is

chosen such that the real part of the eigen values of polynomial p(s)

p(s) = cns
n + cn−1s

r−1 + ...+ c1s
1 + co

are negative, z1 = h(x).
For case b(ξ, η, θ) = 0 for a time t, we apply the modified gradient descent control[7]. Let η(t)

is a virtual output of the systems and ηd(t) is the virtual desired output,and equilibrium point
of the internal dynamics of normal form of the system. Then we find rη as relative degree of the
system if η(t) is the output of the system. We know that η ∈ Rn−r then rη = [r1η, · · · , rn−rη ].

Based on y(t), η(t) and their derivatives, we construct the performance index as a descent
function as follows,

F0(y(t), η(t)) =

 r∑
j=0

aj(y
(j)(t)− y(j)d (t))

2

+
n−r∑
i=1

 riη∑
j=0

bij(η
(j)
i (t)− η(j)di (t))


2

, (6)

where the constants a0, · · · , ar; bi0, · · · , biriη , i = 1, · · · , n− r will be chosen such that eigenvalues

of polynomials
ars

r + ar−1s
r−1 + · · ·+ a1s+ a0, (7)

biriηs
riη + biriη−1s

riη−1 + · · ·+ bi1s+ bi0, (8)
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are real negative. Defines the descent function F0 as a quadratic function to ensure that the
function F0 has a minimum value.

The modified gradient descent control is

u̇ = −dF0

du
+ v, (9)

where v is an artificial input,

v =


k(x, u) if

∂F0

∂u
6= 0

0 if
∂F0

∂u
= 0,

(10)

with

k(x, u) =
1
∂F0
∂u

−∂F0

∂x
ẋ−

√(
∂F0

∂x
ẋ

)2

+

(
∂F0

∂u

)2
 . (11)

3. Redefinition Output Approach
3.1. Exact Linearization
Consider the following SISO affine nonlinear control system

ẋ1 = x2 + 2x21
ẋ2 = x3 + u (12)

ẋ3 = x1 + x3

y = x1; yd(t) = sin t. (13)

By using the output λ(x) = x3, the nonlinear system (12) can be linearized exactly.

ż1 = z2

ż2 = z3 (14)

ż3 = a(z) + u,

where a(z) = z1 + z2 + (2(z2 − z1) + 1)(z3 − z2 − 2(z2 − z1)2 + 2(z2 − z1)2). By input-output
linearization technique we get

u = −a(z) + v. (15)

Let yd(t) = sin(t) = x1d(t). Next, we choose z1d(t) such that if z1(t) tracks z1d(t) then
y(t) tracks the desired output yd(t). Consider the equation : ẋ3 = x1 + x3. By replacing
x1 with x1d(t) = sin(t), we have a differential equation ẋ3 − x3 = sin(t). Then, we solve
the differential equation to obtain x3 = 1/2(−sin(t) − cos(t)). This solution we state as
x3d(t) = 1/2(−sin(t)− cos(t)). Thus, for the output tracking problem we have

v =
1

a3
ż3d −

3∑
i=1

ai−1(zi − zid). (16)

The simulation results is given in Figure 1.
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Figure 1. Left : Output Tracking (exact linearization), x3 to x3d; Right: Output Tracking
(original system) y to yd

3.2. Relative degree r = n− 1
Consider the nonlinear system (SISO)

ẋ1 = x2

ẋ2 = x3 + x1x3

ẋ3 = x4 − u+ x1x3 (17)

ẋ4 = u− 2x1x3

y = x1. (18)

The nonlinear system (17)-(18) has relative degree 3 at any point x0 (relative degree of the
system is not well defined). Because the stability of zero dynamic is unstable, the nonlinear
system (17)-(18) is the non-minimum phase. Now, redefining output z1 = x1 + 2x2 + 2x3 + 2x4.

By considering the new output, the relative of the system (17) is 3 at any point x0 ((relative
degree of the system is not well defined). The system (17) in normal form with respect to output
z1

ż1 = z2

ż2 = z3

ż3 = a(z) + b(z)u (19)

η̇ = −η + z3,

with a(z) = x4 − x21x3 − 3x1x3 − x2x3 − x1x4, b(z) = 1 + x1. Thus the system (17) is the
minimum phase with respect to the new output.

Then according to (9), the modified steepest descents control with respect to z1 is

u̇ = −2(1 + x1)a3
(
a0(z1 − z1d) + a1(ż1 − ˙z1d) + a2(z̈1 − ¨z1d) + a3

(
z
(3)
1 − z

(3)
1d

) )
+ v, (20)

where v as in equation (10).
Let yd(t) = x1d(t) = 0.5sin(t). Next, we choose z1d(t) such that if z1(t) tracks z1d(t), then y(t)

tracks the desired output yd(t). By replacing x1 with x1d(t) = 0.5sin(t), then x2d = 0.5cos(t).

By replacing x2 with x2d(t), then x3d = − 0.5sin(t)
1+0.5sin(t) . By replacing x3 with x3d(t), we have a

differential equation ẋ4 − x4 = −0.5cos(t)
(1+0.5sin(t))2

+ 0.25sin2(t)
1+0.5sin(t) .

Thus x4d = 1/2(−0.5cos(t)− 0.5sin(t) + sin(t)
1+0.5sin(t)). Now, z1d = 0.5cos(t).
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Figure 2. Left : Output Tracking, z1 to z1d; Right: Output Tracking (original system) y to yd

Simulation results for the modified steepest descent control (20) are shown in Figure 2 for
constants a0 = 15, a1 = 23, a2 = 9, a3 = 1. Initial value x1(0) = 0, x2(0) = 0.5, x3(0) = 0,
x4(0) = −0.5, u(0) = 0.2:

3.3. Relative degree r = n− 1 with uncertainty
Consider the following SISO affine nonlinear control system

ẋ1 = x2 − x31
ẋ2 = x3 − u+ 2x31 (21)

ẋ3 = θ sin(x1) + u− 2x31
y = x1. (22)

The zero dynamic system (21)-(22) is η = η̇. Thus the system (21)-(22 is the non-minimum
phase.

Now redefining output : z1 = αx1 +x2 +x3, with 0 < α < 1. Then we have the zero dynamic
system (21)-(22) with respect to the output z1 is

η̇ = η −
( −η
α− 1

)
−
( −η
α− 1

)3

+ θ sin

( −η
α− 1

)
,

and

ηη̇ = η2 +
η2

α− 1
+

η4

(α− 1)3
+ ηθ sin

( −η
α− 1

)
≤ η2 +

η2

α− 1
+

η4

(α− 1)3
+ |η||θ|

∣∣∣∣ −ηα− 1

∣∣∣∣
=

η2(|θ| − α)

|α− 1|
+

η4

α− 1
. (23)

If |θ| ≤ α, then ηη̇ < 0. Thus the system (21) with respect to the output z1 is minimum phase.
Let yd(t) = π/2. By replacing x1 with x1d = yd = π/2, then x2d = (π/2)3. By replacing x2 with
x2d, we have a differential equation ẋ3−x3 = θ. Thus x3d = −θ. Now, z1d = αx1d+x2d+x3d =
α(π/2) + (π/2)3 − θ.

The modified steepest descent control with respect to the output z1 is

u̇ = −∂F
∂u

= −2a2(a0(z1 − z1d) + a1(ż1 − ˙z1d) + a2(z̈1 − ¨z1d))(1− α) + v, (24)

where v as in equation (10).
Simulation results are shown in Figure 3 for constants a0 = 12, a1 = 14, a2 = 6, α = 0.75.

Initial value x1(0) = 0, 5, x2(0) = 1, x3(0) = 0, u(0) = 0, θ(t) = 0.6.



6

1234567890 ‘’“”

ICMCE IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1016 (2018) 012009  doi :10.1088/1742-6596/1016/1/012009

Figure 3. Left : Output Tracking, x3 to x3d; Right: Output Tracking (original system)
y to yd

4. Conclusion
In this paper, we have applied the input-output linearization and modified gradient descent
control for 3 examples of the nonlinear nonminimum phase systems with or without uncertainty.
Before applying both of method, the output of the system must be redefined as a linear
combination of the state variables systems, such that the system becomes minimum phase with
respect to a new output. Furthermore, the new desired output will be set based on the desired
output of the original system. Simulation results are shown that the output of the systems tracks
the output desired of the systems. From these results, it is possible to apply both methods to
any relative degree of the nonlinear control system.
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