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Abstract. Chagas disease is a parasitic infection caused by protozoan Trypanosoma cruzi which is transmitted to human by insects
of the subfamily Triatominae, including Rhodnius prolixus. This disease is a major problem in several countries of Latin America.
A mathematical model of Chagas disease with separate vector reservoir and a neighboring human resident is constructed. The basic
reproductive ratio is obtained and stability analysis of the equilibria is shown. We also performed sensitivity populations dynamics
of infected humans and infected insects based on migration rate, carrying capacity, and infection rate parameters. Our findings
showed that the dynamics of the infected human and insect is mostly affected by carrying capacity insect in the settlement.

INTRODUCTION

Chagas disease was discovered by a Brazilian doctor named Carlos Chagas in 1909. The disease is caused by Try-
panosoma cruzi parasite which is transmitted to humans through a Triatomine insect. The three major insects of the
parasite are Triatoma infestans, Triatoma dimidiata, and Rhodnius prolixus [1]. Triatomine insects are blood-sucking
insects from mammals including humans. Its habitats that are not far away from humans make these insects easily
reach settlements and interact with humans. Triatomine insects generally bite humans at night [9][11]. After biting
humans, the triatomine deposits its feces containing the Trypanosoma cruzi on the host’s skin surface. Then the para-
site enters the human body through insect bites or mucous membrane. In the human body, the parasite will divide and
attack the existing cells such as the heart and lymph nodes. In chronic conditions this disease can lead to heart failure
and swelling of the intestines very seriously. Both of these conditions may lead to death [11].

Chagas disease is a major disease problem in the world, especially Latin America [3]. By 2016, about 6-7 million
people worldwide are infected with chagas. More than 30 % of the infected are classified as chronic to the heart and
more than 10 % are chronic stages of the digestive and nervous [4]. There are 21 Latin American countries that
have problems with the spread of this disease, including: Argentina, Belize, Bolivia, Brazil, Chile, Colombia, Costa
Rika, Ecuador, El Salvador, French Guiana, Guatemala, Guyana, Honduras, Mexico, Nicaragua, Panama, Paraguay,
Peru, Suriname, Uruguay and Venezuela. Based on DNDi [7], in Colombia, as many as 437,960 people are infected
with chagas and 4,800,000 are at risk of infection, with Rhodnius prolixus as the main vector of human infection.
This condition is caused by the palm trees as a habitat of Rhodnius prolixus are abundant and close to the settlement.
Transmission of chagas disease to humans requires close interaction between the vector and humans and this generally
occurs in the settlements. Therefore, the household infestation is the main factor causing increased chagas disease
problems in Colombia [6].

Studying population dynamics to control vector is an effective method of preventing chagas disease [4]. Some re-
searchers have developed a mathematical model for chagas disease. Erazo and cordovez [3] developed a mathematical
model of the dynamics of chagas disease by observing the palm-house proximity. Velasco-Hernandez [5] formulated
a host-vector model of chagas disease transmission by distinguishing between the acute stage and the chronic stage.
Cohen and Gutler [12] developed a mathematical model of household transmission by paying attention to domestic
animals. Inaba and Sekine [10] assumed that the infected population is structured by the disease age, the infection
rate, and the removed rate depend on the disease age.

In this paper, we developed a new simple mathematical model of chagas disease transmission with separate vector
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reservoir and resident settlements. Different to the researcher mentioned above, we take into account the parameters
of migration rate, carrying capacity of vector rhodnius prolixus, and infection rate.

MODEL FORMULATION

In this section we will discuss about the formulation of chagas disease model by taking into account the human
population and Rhodnius prolixus population. Since there is no recovery in chagas disease [2] then we defined S,
is susceptible humans, Ej is exposed human, and /, is infected humans. If N; is the constant of the total human
population then N, = S + Ej; + I,. In the vector population, we defined M, is susceptible rhodnius insect in the
palm plantation, S, is susceptible rhodnius insects in the settlement, E, is exposed insects in the settlement, and I, is
infected rhodnius insects in the settlement.

The mathematical model of chagas disease transmission involves two areas: palm plantations and settlements. In
this model, it is assumed that there is no vertical transmission on insects or humans and only contact between insects
and humans in settlements that can cause infection. Chagas disease infections in humans may occur if infected insects
(I, ) make contact with susceptible humans (S ;). Further, insect infections can occur if susceptible insects (S ;) make
contact with an infected human (/;). All parameters used are constant and per day units.

In residential areas, rhodnius prolixus insects generally bite humans at night. We assume at rate a one human
can be infected with Trypanosoma cruzi parasite and at rate b one insect may be infected with a Trypanosoma cruzi
parasite. The Rhodnius prolixus insect has a birth rate of 8 and a mortality rate of . While humans have a birth rate
and death rate of . The incubation period of chagas disease in humans is 1/6 and the incubation period in insects
is 1/o. Carrying capacity of insects in the settlement is 1/c. In the plantation area, it is assumed that all the insects
are susceptible (M,). Insects can migrate from palm plantations to settlements at rate w and insect carrying capacity
on plantations is 1/d. Because it was assumed that no contact between humans and insects could lead to infection in
the plantation, the mathematical model in the palm plantation area was a logistic model of Rhodnius prolixus. The
transmission diagram of chagas disease is presented below.

l,u M. +d Mrz ! wM,. / {Ms,_ﬂs,._ﬂ;, lME,+aE,.NI. tp:ﬁs.r,..ﬂ:,
————————————— \.i I . S A

FIGURE 1. Chagas disease transmission diagram with separated vector reservoir and resident settlement. The blue dashed line is
palm plantation as vector reservoir and the red dashed line is villages as the resident settlement.
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Based on the assumption and the transmission diagram, our normalized mathematical model can be formulated
as follows:

M,

— = BM, —dM? — uM, — wM, (D
d

% = a-aS,—aSul, 2)
dE

_dth = aSpl, — aky - 6E, @)
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d,

= O0E, —al
dt T @
s,
7 = BN, +wM,—-bS I, —uS,—cS,N,
dE,
= bS.I,—uE,—ocE, - cE.N,
dt
dl,
— = 0oE,—ul, —cl,N,
dt

with region of biological interest Q = {M,., Sy, Ey, Iy, S, E, I, € RZJ Spy+E,+1,=N;,, S,+E.+1.,=N,}

ANALYSIS

Basic Reproduction Number

“
&)
(6)
(N

Basic reproduction number (Ry) indicates how many secondary infections when an infected individual/person enter to
a virgin population during infection period. It is an important parameter that growth indicator a disease in a population.
In this subsection, we derive the formulation (Ry) of this model by using Next Generation Matrix (NGM) [13]. In this
method, we consider only groups of exposed and infected both human and insect, i.e Ej, I, E, and I,. Then, we have
matrix F and matrix V representing transmission matrix and transition matrix, respectively, that evaluated at Ey. NGM

is formulated as FV~! and its spectral radius is called Ry. Hence, We have

0 0 cN(,.1+;1
s
NGM o ° ° °

= b(B AN+ w—p w-w?)
0 d(cN+pa 0 0
0 0 C‘N,-f;l+(7'

Spectral radius of the NGM is
R absa (BdN, + Bw — pw — w?)
0 da (cN, + /,1)2 (N, +u+o)(a+90)

In the next section, we use threshold parameter R = Rg in discussing equilibrium points and their stability.

Equilibrium Points and Their Stability

This model has two equilibrium are follows

ﬂ_l.l_(l.) ﬂdNr'i‘ﬁw_ﬂ(U_(J)z * * * ok * %k
= 0,0,0,0,0 d E,={M E;,I E I
Ey { d .1 d(cN, + ) »U, U, U, U, an 1 { P S Ep 1y, S Ex r}
where
. a¢ (¢ +0)(p (a+0)+bo)
Sh
b6 (¢ (¢p+0)+ao (BN, + wM}))
g (@+6)(a¢ (p+0)+ao (BN, + wM}))

ro= ao (¢(a + 6) + bo)
?¢*(p+0)(R-1)
béag (p+0)+bdac (BN, +w M)
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_ ad* @+ R-1)
T (ap+bS+p)ac
ad® @+a)(R-1)

I ba¢ (¢ +0)+abo (BN, + w M)
ro= ¢ Npa (@+6)(R-1)
T (@p+(p+b)a
and
M;F:,B_#T_‘U, ¢ =cN, +pu

Since infection population in Ej is zero, so it is known as disease free point. While E; is known as endemic point
where exist if R > 1. Now, we discuss stability of E( point in the following theorem

Theorem 1 The equilibrium point of Ey is locally asymptotically stable if R < 1, and the point is unstable saddle
R>1

Proof The system (1)-(7) has jacobian matrix at Ey as follows

[ Biutw O 0 0 0 0 0
0 —-a 0 0 0 0 —-a
0 0 -a-90 0 0 0 a
HEy) = 0 0o 6 —a 0 0 0 (10)
w 0 o MNmeM) o
0 0o o (M) o pio 0
0 0o 0 0 0 o ¢ |

Stability of the E depend on the roots of one of the factors of characteristic equation of the matrix

A AP + A+ A A+ A4)=0

where
A3 = (Q2¢+2a+d5+0)
A, = (az+6a+4a¢+200'+26¢+50'+¢2+a'¢)
A = (2a/+6)¢2+(2012+2a6+2cxo'+50')¢+a/0'(a+5)
Ay = ad(@+o)(@+9)(1-R)

If 0 < R < 1 and all parameter values are positive, after some algebraic computation, we obtain

A2A

Aidos A} = AAg > Aidss — A} - 1(;
Qo+o)(a+d)(a+p+0)2a+d)(a+d+d)(a+6+o+0)
> 0

According to Routh-Hurwitz criteria, all roots of the equation are negative. Thus the E point is locally asymptotically
stable. The following theorem discuss the stability of the E; point

Theorem 2 The equilibrium point of E is locally asymptotically stable if R > 1, and the point is not exist if R < 1

020008-4



Proof Jacobian matrix at E, is

[ 2dM:+B-u-w 0 0 0 0 0 0
0 —al} —«a 0 0 0 0 -as}
0 al; -a-0 0 0 0 as;
0 0 6 - 0 0 0 (11)
w 0 0 -bS; —bl, —cN,—pu 0 0
0 0 0 bS; bi; —cN, —u-o 0
0 0 0 0 0 o —cN, — |

Stability of the E depend on the roots of one of the factors of characteristic equation of the matrix

A+ B+ B 2+ BA+By=0

where
By = al; +bl, +2cN,+2a+6+2u+0
B, = ablIl +b(@+2a+6+0)[[+aRé¢+a+5+0) [ +¢ (p+4a+25+0)+a(@+d)+0 Qa+d)
By = ab@+a+6+0)LII+b(p Qa+d)+(@+o)(@+d)+ao)l;
+a(@p (p+2a+26+0)+0 (@+)I+pRa(@+8)+(@Pp+0)2a+d)+ao (@+0)
By = ab(@p+o)(@+0) LI +ab@+0)(a+8)I, +ap (p+0)(a+0)I;

-0 abS,;S;6 + PP +add +top+adod

next we substitute elements of 17, I*

w1, S5, 8) in Eq to By, we have

ag? (@ +06) (¢ +0)(dad (p+0) +acd (BN, + wM?)) (@ +8) ¢ +5b)* (¢ + ) (@ + ) (R—1)
(@ d¢? + aBdo N, + a dod + awo M?) (a + 6) ¢ (¢ + o) (ap + 6u + bS)*

By =

If R > 0, then all coefficients of the equation are positive. After some arrangements, we obtain

B\B,B; - B} - BiBy > B\B,B; - B} - B}B,
(b];+¢+o-)(¢+a+6+o-)(bI;+¢+a+6)(a1,+2a+6)

(alj+¢+a+o-)(a1;‘+blg+¢+a)
> 0

where B;) = By + 60 abS ;S ;. According to the Routh Hurwitz criteria, all roots of the equation are negative. Thus the
point of E; is locally asymptotically stable. Theorem 1 and theorem 2 give us information that the disease will tend
become endemic in long time if R > 1 and become extinct if R < 1.

NUMERICAL SIMULATIONS

Host-vector model simulation is done by first determining the required parameters. The parameters are determined
based on estimates and literature that have been assessed. The description of all parameters and their values are
provided in the following table. Based on these parameters, obtained Ry = 11.012 > 0 which means that the endemic
point is stable and the disease free point is unstable.

Here we discuss how the effect of parameter changes on the dynamics of the infected vector and the infected
host. Three parameters that were examined were the vector migration rate (w), infection rate (a) and vector carrying
capacity in the settlement (c™!). The graphs are presented in Figure 2,3, and 4.

Based on figure 2, there is no significant change in the infected human population. This is because migratory
insects are all healthy insects, therefore, can not infect humans directly. Conversely, there is a significant change in
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TABLE 1. Parameters Description

Parameters Description Value Unit References
a Infection rate between infected vector and susceptible host ~ 0.137  day™!  assumed
b Infection rate between infected host and susceptible vector ~ 0.096  day~! assumed

a! Host recruitment rate 70x365 day! assumed
B Birth rate of vector 0.8 day™! assumed
Natural death of vector 0.05 day‘1 [3]
51 Human incubation rate 12 day‘1 [1]
o! Vector incubation rate 7 day™' [1]
c! Carrying capacity of vector in settlement 3/4 day™!  assumed
d’! Carrying capacity of vector in palm plantation 5/4 day~!  assumed
w Migration rate of vector 0.05 day™! [3]

the population of infected insects. This is because healthy insects can be directly infected if they deal directly with
infected humans. In addition, it can be seen that the increasing migration rate has resulted in an increasing population
of infected humans and insects.

Based on figure 3, there is a considerable change in human populations and insect populations. This can happen
because the greater of carrying capacity can make the number of insects in the settlement is increased therefore the
chance of human or insect to get infected is also increased. On the basis of this, the greater carrying capacity (¢™!)
will result in the greater number of infected humans and insects.

Based on figure 4, there is an appreciable change in the infected human population. This is because the infection
rate (a) is a successful chance of an infected insect to infect a healthy human. Therefore humans get a direct influence
on the magnitude of the infection rate. inversely related to it, there is no significant change in the population of infected
insects. This is because the magnitude of infection rate (a) does not directly affect the number of infected insects.
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0z 0,008
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1 0,006~
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0,5
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2 1000 2000 3000 000 so00 S000 a 000 4000 6000 80bo 10000 | 12000
Times | days ) Times (days )
—— w=0005 —— w=005""""" w=0.1 —— w=0005 —— @=005""""" w=0.1
(@) (b)

FIGURE 2. The infected vector and infected host dynamics in relation to varying migration rates (w) of Rhodnius prolixus: a.
dynamics of infected human (/,,) b. dynamics of infected Rhodnius prolixus(l,).

DISCUSSION AND CONCLUSION

The model of chagas disease transmission using the host-vector model is presented in the system (1)-(7). Based on the
model, discussed two equilibrium points i.e disease free point and endemic point. By using New Generation Matrix
(NGM) obtained basic reproductive ratio (Ry). The result shows that if Ry < 1 then chagas disease will disappear both
in host population and vector population. On the other hand, If Ry > 1 then the disease will still exist in population
vector and host. Based on the sensitivity analysis we have discussed the dynamics of population vectors and infected
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FIGURE 3. The infected vector and infected host dynamics in relation to the varying carrying capacity of Rhodnius prolixus in
settlement (¢™!) : a. dynamics of infected human (f;,) b. dynamics of infected Rhodnius prolixus(l,).
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FIGURE 4. The infected vector and infected host dynamics in relation to varying infection rates (a): a. dynamics of infected
human (/;) b. dynamics of infected Rhodnius prolixus(l,).

hosts depending on migration rate parameters (w), infection rate (a), and carrying capacity vectors in the settlement
(c™"). We conclude that the dynamics of the infected human and insects is mostly affected by carrying capacity of
insect in the settlement.
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