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Abstract. After 70 years since the zika was identified in Uganda, zika is now documented in 62 countries. In general, people
infected with this disease do not experience severe conditions, but for pregnant women can cause serious problems because the
zika can spread to the fetus. One result, zika can cause abnormalities in the fetal brain called microcephaly. Control and prevention
are very important to reduce the spread of this disease. Here, we discussed the problem of optimal control in the model of zika
transmission associated with the use of insecticide-treated nets (ITN) and indoor residual spraying (IRS). Using the approach of
optimal control theory, we completed the objective function so that the infected population and its control cost are minimum.
Numerically using the Forward-Backward Sweep Method, we obtained the control design of ITN and IRS as a function of time.
The results show that the use of both simultaneously is more effective in reducing the population of infection than the use of ITN
alone or the IRS alone.

INTRODUCTION

Currently, zika is a serious problem that become global health threat for the world community because of the increas-
ing number of cases and the rapidly expanding geographic range [1]. The disease is transmitted through the bite of
A. aegypti mosquito. In addition, sexual contact can transmit zika between humans directly as reported in Argentina,
Canada, Chile, France, Italy, New Zealand, Peru, Portugal and the USA [2, 3]. Usually this disease does not pose a
threat of life, but if pregnant women are infected with this disease may increase the risk of abnormalities in the fetal
brain such as microcephaly [4, 5]. Unfortunately, no vaccine, specific treatment, or fast diagnostic test is available to
treat, prevent, or diagnose zika virus infection at this time.

Mathematical models have been used by several researchers to study the transmission dynamics [6, 7] and control
of vector-borne diseases [2, 8]. These models simulate the effect of different control strategies including mosquito con-
trol, reduction of contact with mosquitoes, avoidance of sexual contact (for zika), sound environmental management
practices and community education. This type of model is used to understand not only the dynamics of the spread of
vector-borne diseases but also to conduct experiments to evaluate the effectiveness of interventions / control measures
aimed at improving their impact on the population level, or to a higher level [6, 9]. In recent study, Padmanabhan et.
al. in [10] developed zika transmission with considering sexual contact can transmit the disease in the frame work
SEIR-SEI. They also investigate the effect of Insecticide-Treated Mosquito Nets (ITN) and Indoor Residual Spraying
(IRS) to infection population without using optimization technique. In this model, they set the values of parameter
ITN and IRS are constant.

Over the last two decades, two prominent approaches for controlling vector populations, recommended by WHO
and CDC, involve the use of ITN and IRS. Using ITN can help reduce contacts between mosquitoes and humans at
home. Further, mosquitoes that remain within the boundaries of sprayed homes after their meals can die as a result
of IRS [10]. In this work, we design control as intervention of ITN and IRS in [10] as function time such that the
infection population and cost of the interventions will be minimum.
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MATHEMATICAL MODEL

We adapt an model in previous work in [10] that consider zika are not only spread through the bite of A. Aegyti
mosquitoes but also through sexual. The human population is divided into five compartments, i.e. susceptible (x1),
exposed (x2), symptomatic infected(x3), asymptomatic infected (x4) and recovery (x5). The mosquito population is
divided into three compartments, i.e. susceptible (x6), exposed (x7) and infected(x8). Human population size is denoted
by xh and mosquito population size is denoted by xm. Zika transmitted through interaction human and mosquito with
contact rate β1 =

bp1
xh

and β2 =
bp2
xh

, and sexual with contact rate β3 =
ah
xh

. This model is controlled by input parameter
of u1 and u2 that represent ITN and IRS, respectively. The change rate of individual in each compartment is stated by
the following differential equation system

ẋ1 = −β1 (1 − u1) x1x8 − β3 (x3 + x4) x1 (1)
ẋ2 = β1 (1 − u1) x1x8 + β3 (x3 + x4) x1 − α1x2 (2)
ẋ3 = (1 − q)α1x2 − γ1x3 (3)
ẋ4 = qα1x2 − γ2x4 (4)
ẋ5 = γ1x3 + γ2x4 (5)
ẋ6 = µxm − µx6 − β2 (1 − u1) (x3 + x4) x6 − (hu1 + ju2) x6 (6)
ẋ7 = −α2x7 − µx7 + β2 (1 − u1) (x3 + x4) x6 − (hu1 + ju2) x7 (7)
ẋ8 = α2x7 − µx8 − (hu1 + ju2) x8 (8)

with region of biological interest
Ω = {x1, x2, x3, x4, x5, x6, x7, x8 ∈ R8

+|x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = xh, x6 + x7 + x8 = xm}
The description of all parameters and their values are provided in the following table.

TABLE 1. Parameters Description

Parameters Description Value Unit References
b Biting rate of vector 0.5 day−1 [11]
ah Sexual transmission rate of zika 0.2 day−1 [2]
p1 Probability zika transmission from vector to human 0.4 day−1 [11]
p2 Probability zika transmission from human to vector 0.5 day−1 [12]
α1 Human incubation rate 0.2 day−1 [13]
α2 Vector incubation rate 0.1 day−1 [11, 14]
γ1 Symptomatic human recovery rate 0.25 day−1 [2]
γ2 Asymptomatic human recovery rate 0.14 day−1 [2]
µ Natural death of vector 0.04 day−1 [15]
q Proportion of asymptomatic infection [0,1] dimensionless Assumed
h Parameter for ITN rate [0,1] day−1 Assumed
j Parameter for IRS rate [0,1] day−1 Assumed

u1 Control variable of ITN [0,1] day−1 [10]
u2 Control variable of IRS [0,1] day−1 [10]

The model has basic reproduction number as follows

R0 =
ah

2

(
1 − q
γ1
+

q
γ2

)
+

1
2

√

a2
h

(
1 − q
γ1
+

q
γ2

)2
+ R2

0,a + R2
0,s (9)

where

R2
0,a =

b2β1β1α2(1 − q)(1 − u1)2

γ1xh(µ + α2 + hu1 + ju2)(µ + hu1 + ju2)

R2
0,s =

b2β1β2α2q(1 − u1)2

γ2xh(µ + α2 + hu1 + ju2)(µ + hu1 + ju2)
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In epidemiology, R0 is an important parameter that indicates whether a disease will continue to grow or cause death.
If R0 < 1 then the disease will go to the disease free point, but if R0 > 1, then the endemic point will arise where the
illness will remain for a long time.

CONTROL PROBLEM

Since we want to design u = (u1, u2) that infected human and cost of ITN and IRS interventions are minimum, then
we consider the following objective function

min
Γ

J(u1, u2) =

t f∫

0

[
A1x2

2 + A2x2
3 + A3x2

4 +
1
2

A4u1(t)2 +
1
2

A5u2(t)2
]

dt (10)

subject to system (1)-(8)

where Ai, i = 1, 2, 3, 4, 5 are weighting parameters used for state variables x2, x3, x4 and control variables u1
and u2 and Γ = { (u1, u2) | 0 ≤ ui ≤ 1, i = 1, 2}.
Lagrange equation of the control problem is

L = A1x2
2 + A2x2

3 + A3x2
4 +

1
2

A4u1(t)2 +
1
2

A5u2(t)2

Hamiltonian equation is

H = L +
8∑

i=1

λigi(t, x, u)

= A1x2
2 + A2x2

3 + A3x2
4 +

1
2

A4u1(t)2 +
1
2

A5u2(t)2 + λ1 ẋ1 + λ2 ẋ2 + λ3 ẋ3 + λ4 ẋ4 + λ5 ẋ5 + λ6 ẋ6 + λ7 ẋ7 + λ8 ẋ8

where λi(t), i = 1, 2, ..., 13 is called adjoint function. We will use Pontryagin Maximum Principle (PMP) [16] to
determine necessary condition for the optimal condition. Let x∗(t) and u∗(t) is solution for the problem, then there are
non trivial vector function λ(t) = (λ1(t), λ2(t), ..., λ10(t)) that satisfy the following equation

x′(t) =
∂H(t, x∗, u∗, λ)

∂λ
, λ′(t) = −∂H(t, x∗, u∗, λ)

∂x
,
∂H(t, x∗, u∗, λ)

∂u
= 0 (11)

Theorem 1 Given the optimal controls u∗1, u
∗
2 and solution x1∗, x2∗, x3∗, x4∗, x5∗, x6∗, x7∗, x8∗ of the correspond-

ing state system (1)-(8), there exist adjoint variables λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8 satisfy the following adjoint equations

λ̇1 = (β1 (1 − u1) x8 + β3 (x3 + x4)) (λ1 − λ2) (12)
λ̇2 = −2A1x2 + α1 (λ2 − (1 − q)λ3 − qλ4) (13)
λ̇3 = −2A1x3 + γ1 (λ3 − λ5) + β2x6(1 − u1) (λ6 − λ7) + β3x1(λ1 − λ2) (14)
λ̇4 = −2A2x4 + γ2 (λ4 − λ5) + β2x6(1 − u1) (λ6 − λ7) + bhx1(λ1 − λ2) (15)
λ̇5 = 0 (16)
λ̇6 = (µ + hu1 + ju2) λ6 + β2 (1 − u1) (x3 + x4) (λ6 − λ7) (17)
λ̇7 = α2 (λ7 − λ8) + (µ + hu1 + ju2) λ7 (18)
λ̇8 = (µ + hu1 + ju2) λ8 + β1x1 (1 − u1) (λ1 − λ2) (19)

with transversality condition λi(t f ) = 0, i = 1, 2, ..., 8. Furthermore u∗1, u
∗
2 are represented by

u∗1 = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0,min

⎛
⎜⎜⎜⎜⎜⎜⎝0.5,

β1 x∗1 x∗8(λ2 − λ1) + β2 x∗6(x∗3 + x∗4)(λ7 − λ6) + h
(
x∗6λ6 + x∗7λ7 + x∗8λ8

)

A4

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(20)

u∗2 = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0,min

⎛
⎜⎜⎜⎜⎜⎜⎝1,

j
(
x∗6λ6 + x∗7λ7 + x∗8λ8

)

A5

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(21)

030026-3



Proof. From necessary condition above (11), we have λ̇ = − ∂H(t,x∗,u∗,λ)
∂x , it follows

λ̇1 = −∂H(t, x∗, u∗1, u
∗
2, λ)

∂x1
= (β1 (1 − u1) x8 + β3 (x3 + x4)) (λ1 − λ2)

λ̇2 = −∂H(t, x∗, u∗1, u
∗
2, λ)

∂x2
= −2A1 x2 + α1 (λ2 − (1 − q)λ3 − qλ4)

λ̇3 = −∂H(t, x∗, u∗1, u
∗
2, λ)

∂x3
= −2A1 x3 + γ1 (λ3 − λ5) + β2 x6(1 − u1) (λ6 − λ7) + β3 x1(λ1 − λ2)

λ̇4 = −∂H(t, x∗, u∗1, u
∗
2, λ)

∂x4
= −2A2 x4 + γ2 (λ4 − λ5) + β2 x6(1 − u1) (λ6 − λ7) + bh x1(λ1 − λ2)

λ̇5 = −∂H(t, x∗, u∗1, u
∗
2, λ)

∂x5
= 0

λ̇6 = −∂H(t, x∗, u∗1, u
∗
2λ)

∂x6
= (µ + hu1 + ju2) λ6 + β2 (1 − u1) (x3 + x4) (λ6 − λ7)

λ̇7 = −∂H(t, x∗, u∗1, u
∗
2λ)

∂x7
= α2 (λ7 − λ8) + (µ + hu1 + ju2) λ7

λ̇8 = −∂H(t, x∗, u∗1, u
∗
2λ)

∂x8
= (µ + hu1 + ju2) λ8 + β1 x1 (1 − u1) (λ1 − λ2)

with transversality condition λi(t f ) = 0, i = 1, 2, ..., 8. Let x1 = x∗1, x2 = x∗2, x3 = x∗3, x4 = x∗4, x4 = x∗5, x6 = x∗6, x7 =

x∗7, x8 = x∗8 and necessary condition ∂H(t,x∗,u∗,λ)
∂u = 0, yields

u∗1 =
β1 x∗1 x∗8(λ2 − λ1) + β2 x∗6(x∗3 + x∗4)(λ7 − λ6) + h

(
x∗6λ6 + x∗7λ7 + x∗8λ8

)

A4

u∗2 =
j
(
x∗6λ6 + x∗7λ7 + x∗8λ8

)

A5

since boundary condition of the controls, so we obtain

u∗1 = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0,min

⎛
⎜⎜⎜⎜⎜⎜⎝0.5,

β1 x∗1 x∗8(λ2 − λ1) + β2 x∗6(x∗3 + x∗4)(λ7 − λ6) + h
(
x∗6λ6 + x∗7λ7 + x∗8λ8

)

A4

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

u∗2 = max

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0,min

⎛
⎜⎜⎜⎜⎜⎜⎝1,

j
(
x∗6λ6 + x∗7λ7 + x∗8λ8

)

A5

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

NUMERICAL SIMULATIONS

Now, we study the dynamics behaviour of human and mosquito population in the presence of ITN and IRS intervention
by solving cost function 10 numerically by using Forward-Backward Sweep Method [17]. In this method, the system
(1) - (8) is solved by the Fourth Runge Kutta Method with the forward time, while the adjoin system (12)-(19) is
completed by the backward time and satisfies the transverse conditions. In the first iteration, the values of u1 and u2 are
initialized and then updated according to equation (20) and (21). After the value of objective function is close enough
to the previous value of objective function, iteration stops. To know the best way of controlling zika transmission,
here we present simulations for three cases. Case I: ITN as control (u2 = 0), case 2 : IRS as control (u1 = 0) and
case 3: ITN and IRS as controls (u1 ! 0, u2 ! 0) with initial condition x1(0) = 750, x2(0) = 100, x3(0) = 50, x4(0) =
50, x5(0) = 50, x6(0) = 500, x7(0) = 100, x8 = 100 and parameter values is provided at Table 1, but for best simulation
we choose b = 1 and β3 = 0.25β1. The numerical result for all cases can be seen in Figure 1 and Figure 2. Figure 1
demonstrate impact the control u1 and u2 to infection population. From Figure 1 (a), Figure 1 (b) and Figure 1 (c), we
know that all given intervention strategies have a significant effect on reducing the population of human infections and
populations of mosquito infections. However, ITN and IRS interventions together provide a maximum reduction in
the population of the infection. Figure 1 (d) shows the profile of basic reproduction number (R0) vs time. This profile
show that the values of R0 increase when the values of u1 and u2 decrease, see Figure 1 (d) dan Figure (2).
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FIGURE 1. Dinamic population and basic reproduction number in the presence of control. (a) Dynamics of symptomatic infected
human, (b) Dynamics of symptomatic infected human, (c) Dynamics of asymptomatic infected human, (d) Basic reproduction
number as function of t
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FIGURE 2. Control u1 and u2 as function of time (t)
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DISCUSSION AND CONCLUSION

In this work, we explore models in [10] taking into account that ITN and the IRS are not constant but time-dependent.
We solved the objective function by using PMP and present simulations of design of u1 and u2 as well as infection
dynamics using the Forward-Backward Sweep method. The results show that by using ITN, IRS or both, the infection
population in humans and mosquitoes decreases faster and reaches zero compared to without intervention. Neverthe-
less, the use of both simultaneously produced the most significant impact on infectious populations compared with
the use of them independently.
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