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Abstract. Here, we analyze the Host-Vector Model and proposed design of vaccination and fumigation to control infectious popu-
lation by using feedback control especially input-output liniearization method. Host population is divided into three compartments:
susceptible, infectious and recovery. Whereas the vector population is divided into two compartment such as susceptible and infec-
tious. In this system, vaccination and fumigation treat as input factors and infectious population as output result. The objective of
design is to stabilize of the output asymptotically tend to zero. We also present the examples to illustrate the design model.

INTRODUCTION

Diseases transmitted by vector known as vector born disease. Aedes mosquito is the most common vector that respon-
sible to Chikungunya, Dengue, Rift Valley Fever, Yellow Fever and Zika. Others such as Culex mosquito responsible
to Japanese Encephalitis, Lymphatic Filariasis dan West Nile Fever. Next, a familiar and dangerous disease is Malaria
that caused by Anopheles mosquito [31]. Class of the diseases are health problems that threatens the entire of the
world. Each year, incidence of the diseases up to 1 billion cases and 1 million of them died as well as currently, half
human population living in areas where dengue is endemic [31], so they are at risk of the disease. The spread of the
disease has been studied through mathematical modeling. It is useful tool to describe the dynamics of host and vector
population. In addition it can give benefit to design of the diseases control. In the literature, we can found many studies
of the spread of the diseases [2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 20, 23, 27, 29, 30]. Models that studied the spread of the
diseases in the presence of the control can be found in [1, 2, 17, 18, 21, 24, 25]. In these studies, control approaching
using constant parameter or optimal control theory.

In this work, we propose design of vaccination and fumigation on Host-Vector Model by approaching feedback
control especially input-output linearization method and consider human as host and mosquito as a vector. Organiza-
tion of this paper are as follows. The second section describe a model SIR-SI. The third section discuss analysis model
including positivity and boundedness as well as local stability. In the next section, we discuss design of vaccination
and fumigation. In the fifth section, we present numerical results to support control design from previous section. In
the last section, we discuss the whole of the paper and further research.

MODEL

Here, in the Host-Vector Model, population of host is denoted by xh and population of vector is denoted by xv. Host
population is divided by three compartments such as susceptible, infectious and recovery individuals that denoted
by x1, x2 and x3 respectively. Whereas the vector population is divided by two compartment such as susceptible and
infectious individuals that denoted by x4 and x5, respectively. Therefore, xh = x1+ x2+ x3 and xv = x4+ x5. The model
is expressed in the form of system differential equation

ẋ1 = a1 − b1x1x5 − (c1 + u1) x1 (1)
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ẋ2 = b1x1x5 − (c1 + d1) x2 (2)

ẋ3 = d1x2 − c1x3 + u1x1 (3)

ẋ4 = a2 − b2x2x4 − (c2 + u2) x4 (4)

ẋ5 = b2x2x4 − (c2 + u2) x5 (5)

with initial condition x1(0), x2(0), x3(0), x4(0), x5(0) ≥ 0, and the domain isΩ = {(x1, x2, x3, x4, x5) ∈ R5
+ | x1+x2+x3 =

xh, x4 + x5 = xv}. The description of all parameters are provided in the following table.

TABLE 1. Parameters Description

Parameters Description unit
a1 host recruitment rate day−1

b1 contact rate between infectious vector and susceptible host day−1

c1 natural death rate of host day−1

d1 transmission rate from infectious to recovery day−1

a2 vector recruitment rate day−1

b2 contact rate between infectious host and susceptible vector day−1

c2 natural death rate of vector day−1

u1 fraction of vaccination -
u2 fraction of fumigation -

For case the vector is mosquito, contact rate is formulated by b1 =
bph x1 x5

xh
, and b2 =

bpv x2 x4

xh
where b is biting rate, ph

and pv are transmission of probability.

POSITIVITY AND BOUNDEDNESS

The positivity and boundedness condition of model (1)-(5) described by the following theorems.

Theorem 1 Let x1(0), x2(0), x3(0), x4(0), x5(0) ≥ 0, then solution of (1) − (5) in Ω for t > 0
Proof. Let ui is vector normal to axis of xi where i = 1, 2, 3, 4, 5 with direct to interior Ω. Take ui as follows
u1 = (0, 1, 1, 1, 1),u2 = (1, 0, 1, 1, 1),u3 = (1, 1, 0, 1, 1),u4 = (1, 1, 1, 0, 1),u5 = (1, 1, 1, 1, 0).
Next, calculate dot product between ui and x
u1 · ẋ = 0·ẋ1 + ẋ2 + ẋ3 + ẋ4 + ẋ5 = a2 + u1x1 > 0
u2 · ẋ = ẋ1 + 0·ẋ2 + ẋ3 + ẋ4 + ẋ5 = a1 + a2 > 0
u3 · ẋ = ẋ1 + ẋ2 + 0·ẋ3 + ẋ4 + ẋ5 = a1 + a2 > 0
u4 · ẋ = ẋ1 + ẋ2 + ẋ3 + 0·ẋ4 + ẋ5 = a1 > 0
u5 · ẋ = ẋ1 + ẋ2 + ẋ3 + ẋ4 + 0·ẋ5 = a1 + a2 > 0
The values of dot product is positive, then direct of vector fields is to interior of Ω,
∴ solution of (1)-(5) is positive for t > 0. This prove the theorem

Theorem 2 There is M > 0 such that the solution (1) − (5) satisfies xi < M, i = 1, 2, 3, 4, 5
Proof. Let χ1 (t) = x1 (t) + x2 (t) + x3 (t). Differentiate χ1 to t, we have

χ̇1 = ẋ1 + ẋ2 + ẋ3

= a1 − b1x1x5 − (c1 + u1) x1 + b1x1x5 − (c1 + d1) x2 + d1x2 − c1x3 + u1x1

= a1 − c1 (x1 + x2 + x3)

= a1 − c1χ1

χ̇1 = a1 − c1χ1 =⇒ 0 < χ1 (t) =
a1

c1

+ χ1 (0) e−c1t where χ1 (0) = x1 (0) + x2 (0) + x3 (0)

Next for t tend to infinity, we have

limsupt→∞χ1 (t) =
a1

c1

, =⇒ 0 < x1 + x2, x3≤a1

c1
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Let χ2 = x4 + x5. Differentiate χ2 to t, Then we have

χ̇2 = ẋ4 + ẋ5

= a2 − b2x2x4 − (c2 + u2) x4 + b2x2x4 − (c2 + u2) x5

= a2 − (c2 + u2) (x4 + x5)

χ̇2 = a2 − (c2 + u2) χ2 =⇒ 0 < χ2 (t) =
a2

c2 + u2

+ χ2 (0) e−(c2+u2)t where χ2 (0) = x4 (0) + x5 (0)

Next for t tend to infinity, we have

limsupt→∞χ2 (t) =
a2

c2 + u2

, =⇒ 0 < x4 (t) , x5 (t)≤ a2

c2 + u2

Take M = max { a1

c1
, a2

c2+u2
}, then xi (t) < M where i = 1, 2, 3, 4, 5. This prove the theorem.

EQUILIBRIUM POINTS AND IT’S STABILITY

To find equilibrium points, set ẋi (t) = 0,where i = 1, 2, 3, 4, 5. By using eliminations, we have the following quadratic
equation

b2 (c1 + d1) (a2b1 + c1c2 + c2u1) x2
2 + (−a1a2b1b2 + c2 (c1 + u1) (c1 + d1) (c2 + u2)) x2 = 0

The solutions are

x2 = 0, and x2 =
a1a2b1b2 − c2 (c1 + u1) (c1 + d1) (c2 + u2)

b2 (c1 + d1) (a2b1 + c1c2 + c2u1)

using algebraic manipulation, we have complete solutions as follows

E0 =

{
a1

η
, 0,

u1a1

ηc1

,
a2

τ
, 0

}
dan E1 =

{
x∗1, x

∗
2, x
∗
3, x
∗
4, x
∗
5

}

where

x∗1 =
τ2σ + a1τ b2

η τ b2 + a2b2b1

, x∗2 =
η τ2 (R0 − 1)

η τ b2 + a2b2b1

, x∗3 =
τ ((R0 − 1) η τ d1 + στ u1 + u1a1b2)

b2 (η τ + a2b1) c1

x∗4 =
η τσ + a2σ b1

στ b1 + a1b1b2

, x∗5 =
η τσ (R0 − 1)

στ b1 + a1b1b2

and

R0 =
a1a2b1b2

(c1 + u1) (c2 + u2)2 (d1 + u1)
, η = c1 + u1, τ = c2 + u2, σ = c1 + d1

E0 is free disease point where there are no infectious population either host or vector. E0 is endemic point where
it will exist if R0 > 1. R0 is a threshold parameter that determines existence of E1 as well as stability of E0 and E1.
Stability of E0 is given by the following theorem

Theorem 3 Equilibrium E0 is locally stable in Ω if R0 < 1 and unstable saddle if R0 > 1
Proof. Evaluation of Jacobian Matrix at E0 gives

J0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c1 − u1 0 0 0 − b1a1

c1+u1

0 −d1 − c1 0 0 b1a1

c1+u1

u1 d1 −c1 0 0

0 − b2a2

c2+u2
0 −c2 − u2 0

0 b2a2

c2+u2
0 0 −c2 − u2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)
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Characteristic polynomial of J0 is

p0 = (λ + c1) (λ + c1 + u1) (λ + c2 + u2)
(
λ2 + (c1 + c2 + d1 + u2) λ + (c2 + u2) (d1 + c1) (1 − R0)

)

The eigenvalues of p0 are −c1,−c1 − u1,−c2 − u2 and root of the quadratic equation. Since values of all parameters is
positif, then according to Hurwitz Criteria if R0 < 1, then the part of real root is negative. Therefore, the point of E0

is locally stable if R0 < 1 and saddle point if R0 > 1. This proven the theorem 3.

Theorem 4 Equilibrium E1 is locally stable in Ω if R0 > 1
Proof. Evaluation of Jacobian Matrix at E1 gives

J1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− b1η τσM
στ b1+a1b1b2

− c1 − u1 0 0 0 − b1(στ2+τ a1b2)
η τ b2+a2b1b2

b1η τσM
στ b1+a1b1b2

−d1 − c1 0 0
b1(στ2+τ a1b2)
η τ b2+a2b1b2

u1 d1 −c1 0 0

0 − b2(ησ τ+σ a2b1)

στ b1+a1b1b2
0 − b2η τ

2 M
η τ b2+a2b1b2

− c2 − u2 0

0
b2(ησ τ+σ a2b1)

στ b1+a1b1b2
0

b2η τ
2 M

η τ b2+a2b1b2
−c2 − u2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

Characteristic polynomial of J1 is

p1 = (λ + c1) (λ + c2 + u2)
(
λ3 + s1λ

2 + s2λ + s3

)

where

s1 =
η τ

(
ησ τ + στ2 + σ a2b1 + τ a1b2

)
(R0 − 1)

(στ + a1b2) (η τ + a2b1)
+ 2 c1 + c2 + d1 + u1 + u2

s2 =
η τ (σ a2 (τ + σ) b1 + τ a1 (η + σ) b2 + στ (ησ + η τ + στ + 2 τ c1)) (R0 − 1)

(στ + a1b2) (η τ + a2b1)

+
η2στ3(R0 − 1)2

(στ + a1b2) (η τ + a2b1)
+ (c1 + u1) (c1 + c2 + d1 + u2)

s3 =
η2στ3 (d1 + c1) (R0 − 1)2

(στ + a1b2) (η τ + a2b1)
+
η τ (d1 + c1)

(
2 τ2ση + (η a1b2 + σ a2b1) τ

)
(R0 − 1)

(στ + a1b2) (η τ + a2b1)

The eigenvalues are −c1,−c2 − u2 and root of third order polynomial with coefficient s1, s2, s3. All parameters are
positive, if R0 > 1, then a1, a2, a3 > 0. After some arrangement, we have

s1s2 − s3 >
1

((τσ + a1b2) (ητ + a2b1))2

(
η3στ4

(
ησ τ + στ2 + σ a2b1 + τ a1b2

)
(R0 − 1)3

)
> 0

According to Hurwitz Criteria, the polynomial has part of real root is negative. Therefore, E1 is locally stable if R0 > 1.
This proven the theorem.

CONTROL DESIGN

The method in this section refers in [14]. System (1)-(5) can be simplified in the form

ẋ = f (x) + g(x)u, y = h(x)

where

f (x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 − b1x1x5 − c1x1

b1x1x5 − (c1 + d1) x2

d1x2 − c1x3

a2 − b2x2x4 − c2x4

b2x2x4 − c2x5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, g(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x1 0 0 0 0
0 0 0 0 0
0 0 x1 0 0
0 0 0 −x4 0
0 0 0 0 −x5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

0
u1

u2

u2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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y is output, since our goal is to control the infectious population, then we choose y = x2. Differentiate the output, yield

ẏ = Lf h(x) + Lgh(x)u

if Lgh(x) = 0, differentiate again until rth derivative where LgLr−1
f h(x) � 0, we have

y(r) = Lr
f h(x) + LgLr−1

f h(x)u with LgL f h(x) =
∂(Lf )h
∂x

g(x) and Lr
f h(x) =

∂(Lr−1
f h)

∂x
f (x)

The control law is u = 1
LgLr−1

f h(x)

(
−Lr

f h(x) + v
)
, r is called relative degree.

For design vaccination, set u2 = 0. Next, differentiate the output until linear relation between output and input reached

ẏ = b1x1x5 − (c1 + d1) x2

ÿ = b1 ẋ1x5 + b1x1 ẋ5 − (c1 + d1) ẋ2

ÿ = b1x5 (a1 − b1x1x5 − c1x1 − u1x1) + b1x1 (b2x2x4 − c2x5) − (c1 + d1) (b1x1x5 − (c1 + d1) x2)

The control law is

u1 =
v1 + f1
b1x1x5

(8)

where f1 = (d1 + c1)2 x2 + (b2x2x4 − x5 (2 c1 + c2 + d1)) b1x1 + b1x5 (a1 − b1x1x5)

State transformation T (x) =
[
φ1 φ2 φ3 h(x) Lf h(x)

]T
, where φ1, φ2, φ3 is smooth functions that satisfy

∂φ
∂x g = 0

and T (x) is invertible

∂φ1

∂x
g = 0 ⇐⇒ −∂φ1

∂x1

+
∂φ1

∂x3

= 0 =⇒ φ1 = x4

∂φ2

∂x
g = 0 ⇐⇒ −∂φ2

∂x1

+
∂φ2

∂x3

= 0 =⇒ φ2 = x5

∂φ3

∂x
g = 0 ⇐⇒ −∂φ3

∂x1

+
∂φ3

∂x3

= 0 =⇒ φ3 = x1 + x3

Then, the state transformation is

z = T (x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x4

x5

x1 + x3

x2

b1x1x5 − d1x2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η1

η2

η3

ξ1
ξ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

From (3), we have normal form as follows

η̇1 = a2 − b2η1ξ1 − c2η1, η̇2 = b2η1ξ1 − c2η2, η̇3 = a1 − ξ2 − c1η3, ξ̇1 = ξ2, ξ̇2 = v1, y = h(x) = ξ1 (10)

Here, we can choose v1 = −k1ξ1 − k2ξ2, where k1 and k2 are positive parameters.
For design fumigation, set u1 = 0. As previous steps, we have control law as below

u2 =
v2 + f2
b1x1x5

(11)

where
f2 = (d1 + c1)2 x2 + (b2x2x4 − x5 (2 c1 + c2 + d1 + 1)) b1x1 + b1x5 (a1 − b1x1x5)

and the following normal form

η̇1 = a1 − ξ2 − d1ξ1 − c1η1, η̇2 = d1ξ1 − c1η2, η̇3 = b2ξ1 + b2ξ1η3 −
a2b1η1η

2
3

d1ξ1 + ξ2
, ξ̇1 = ξ2 − c1ξ1, ξ̇2 = v2 (12)

we can choose v2 = −k3ξ1 − k4ξ2, where k3 and k4 are positive parameters.
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EXAMPLES

In this section, we consider Dengue Fever as example. Dengue Fever is vector borne disease where the virus trans-
mitted by bitten of mosquito, particularly Aedes aegypti. In this section, we will apply the input-output linearization
method to control the epidemic of the disease. Data b = 1, ph = 0.5, pv = 0.33,Nh = 2000,Nv = 1000, μv =

1/30,muh = 1/(365×60), α = 1/15; Simulation of dynamics of host population in the presence of vaccination is
shown in Figure 1 (a). We show a comparison the dynamics either without or with vaccination in Figure 1 (b). This
figure shows clearly that vaccination is able to control the infectious population. Figure 1(c) indicate the simulation
of vaccination fraction versus time. Here, we also present the basic reproduction number R0 in time and All the time,
the value is less than 1. In Figure 1 (e) and Figure 1 (f), we shows that positive parameter of k1 and k2 has significant
effect to the infectious dynamics. For the fumigation case, the simulation is shown in Figure (2).
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FIGURE 1. Simulation of the effect of vaccination. (a) Dynamics of human population , (b) Dynamics of infectious human
population, (c) Vaccination control (u1) versus t, (d) Reproduction number (R0) versus t, (e) Parameter of k1 varying, (f) Parameter
of k2 varying
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FIGURE 2. Fumigation Effect. (a) Dynamics of Human Population, (b) Dynamics of Infectious Human Population, (c) Fumigation
control (u1) versus t, (d) Reproduction number (R0) versus t

DISCUSSION AND CONCLUSION

We have analyzed Host-Vector Model and proposed design of vaccination and fumigation by using input-output
linearization method. The results show the design successful to control of epidemic the disease, see Figure 1(b) and
Figure 2 (b). Vaccination can reduce the Basic Reproduction Number, with vaccination, R0 < 1 all the time, see
Figure 1 (d), while without control, R0 = 37.125. This mean that the epidemic of the disease will be eliminated and
the endemic of the disease is not exist. In the design of control law, the parameter of k1 and k2 is important to control
the infectious population as we can see in Figure 1 (e) and Figure 1 (f). In addition, we obtain that after day 25 in
vaccination, about 15 % susceptible need get vaccine to control the infection population. Whereas, in fumigation,
about 25 % need to be killed to control one. The result in Figure 2 (d) shows that, in the presence of fumigation, the
values R0 is increasing until to 18.9, but decreasing significantly and after day 25, the value become 0.47. Due to less
than 1, it indicate that the disease will be eliminated.

In the future, we will extend this work by including the cost of the control either vaccination or fumigation. We
also interest to find formulation of u1 and u2 as function of t and then apply them to origin model.
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