

DEVELOPING CATARACT DISEASE DETECTION USING MACHINE LEARNING ALGORITHM

UNDERGRADUATE THESIS

Submitted as one of the requirements to obtain Sarjana Komputer

By:

VINCENT TIMOTHY LIM 001202000104

FACULTY OF COMPUTING
INFORMATICS STUDY PROGRAM
CIKARANG

MAY, 2023

PANEL OF EXAMINER APPROVAL

The Panel of Examiners declare that the undergraduate thesis entitled **Developing Cataract Disease Detection Using Machine Learning Algorithm** that was submitted by Vincent Timothy Lim majoring in Informatics from the Faculty of Computing was assessed and approved to have passed the Oral Examination on 25 May 2023.

Panel of Examiner

Genta Sahuri, S.Kom M.Kom

Asst. Prof. Dr. Hasanul Fahmi, M.Kom.

Rosalina, S.Kom M.Kom

STATEMENT OF ORIGINALITY

In my capacity as an active student of President University and as the author of the undergraduate thesis/final project/business plan (underline that applies) stated below:

Name

: Vincent Timothy Lim

Student ID number

: 001202000104

Study Program

: Informatics

Faculty

: Computing

I hereby declare that my undergraduate thesis/final project/business plan entitled "DEVELOPING CATARACT DISEASE DETECTION USING MACHINE LEARNING ALGORITHM" is, to the best of my knowledge and belief, an original piece of work based on sound academic principles. If there is any plagiarism, including but not limited to Artificial Intelligence plagiarism, is detected in this undergraduate thesis/final project/business plan, I am willing to be personally responsible for the consequences of these acts of plagiarism, and accept the sanctions against these acts in accordance with the rules and policies of President University.

I also declare that this work, either in whole or in part, has not been submitted to another university to obtain a degree.

Cikarang, May 2023

Vincent Timothy Lim

SCIENTIFIC PUBLICATION APPROVAL FOR ACADEMIC INTEREST

As a student of the President University, I, the undersigned:

Name

: Vincent Timothy Lim

Student ID number

: 001202000104

Study program

: Informatics

for the purpose of development of science and technology, certify, and approve to give President University a non-exclusive royalty-free right upon my final report with the title:

DEVELOPING CATARACT DISEASE DETECTION USING MACHINE

LEARNING ALGORITHM

With this non-exclusive royalty-free right, President University is entitled to converse, to convert, to manage in a database, to maintain, and to publish my final report. There are to be done with the obligation from President University to mention my name as the copyright owner of my final report.

This statement I made in truth.

Cikarang, May 2023

Vincent Timothy Lim

ADVISOR'S APPROVAL FOR PUBLICATION

As a lecturer of the President University, I, the undersigned:

Advisor's Name

: Rosalina, S.Kom M.Kom

NIDN

: 20190900815

Study program

: Informatics

Faculty

: Computing

declare that following thesis:

Title of undergraduate thesis

: DEVELOPING CATARACT DISEASE DETECTION

USING MACHINE LEARNING ALGORITHM

Undergraduate Thesis author

: Vincent Timothy Lim

Student ID number

: 001202000104

will be published in journal / institution's repository / proceeding / unpublish.

Cikarang, May 2023

Rosalina, S.Kom M.Kom

CATARACT DISEASE DETECTION USING MACHINE LEARNING ALGORITHM

ORIGINA	LITY REPORT	
	6% 15% 6% RITY INDEX INTERNET SOURCES PUBLICATION	ONS STUDENT PAPERS
PRIMAR	/ SOURCES	
1	dataconomy.com Internet Source	2%
2	dokumen.pub Internet Source	1%
3	journalppw.com Internet Source	1%
4	www.coursehero.com Internet Source	1%
5	www.propharmacyrx.com Internet Source	1%
6	eyewiki.aao.org Internet Source	1%
7	dspace.daffodilvarsity.edu.bd:80	80 1%
8	Pro ASP NET MVC 4, 2012.	<1%
9	everant.org Internet Source	<1%

Average Perplexity Score: 66.417 A document's perplexity is a measurement of the randomness of the text Burstiness Score: 67.914 A document's burstiness is a measurement of the variation in perplexity Your sentence with the highest perplexity, "Rosalina, S.Kom M.Kom Thesis Advisor Cutifa Safitri, Ph.D.", has a perplexity of: 315

ABSTRACT

The human eye is one of the most essential human organs, but it is also vulnerable to diseases. After years of medical technology enhancement, we can detect and cure most of eye diseases today. But despite this, the current medical technology still has weaknesses, such as disease detection time. Some eye diseases can be fatal if it's not treated as soon as possible, one of the examples is cataract disease. There are still many cases of blindness caused by cataract disease, and this is mostly due to late treatment.

In this thesis, the author researches a method that can produce an assisting tool that can help detect cataract disease for hospitals. The author uses a deep learning technique called Convolutional Neural Network (CNN), it is suitable for image recognition and processing tasks. The idea for this research is to create a machine learning model that have an ability to detect cataract disease based on image patterns. The image that is going to be used as an input is an image of the eye's fundus.

From the research conducted by the author, the machine learning model is also able to detect other diseases that can be identified from the human eye such as, myopia, diabetes, hypertension, glaucoma, and age-related muscular problem. After the model is implemented into a web application system, it shows that it is capable to detect diseases in seconds with a high accuracy evaluation.

ACKNOWLEDGEMENT

First and foremost, the author would like to send his thanks to God for His blessings and guidance throughout his process of creating this thesis, so that the author can complete his thesis using his maximum effort.

The author would also like to express his gratitude towards every party who has help and support him during the thesis development period, special thanks to:

- Both of my parents who have provided me with support and encouragement during the development period.
- Mrs. Rosalina as my thesis advisor, who has provided me with support and guidance throughout the development period.
- 3. President University Computing Lecturers, whom have taught and guide me with their skill, knowledge, and time since the first semester.
- 4. My seniors at my internship, who gave their time and knowledge to always support me with my thesis while also working as an intern.
- 5. Friends and other mentors who always help and support me during this hard period.

TABLE OF CONTENTS

ABSTR	RACT	i
DEDIC	CATION	ii
ACKNO	OWLEDGEMENT	iii
TABLE	E OF CONTENTS	iv
LIST O	OF TABLES	viii
LIST O	OF FIGURES	ix
1 CHAF	PTER I INTRODUCTION	1
1.1	Background	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scope and Limitations	4
1.5	Project Methodology	4
1.6	Final Project Outline	5
2 CHAF	PTER II LITERATURE REVIEW	7
2.1	Artificial Intelligence	7
2.2	Deep Learning	8
2.2	2.1 Residual Neural Network	8
2.2	2.2 Recurrent Neural Network	9
2.2	2.3 Convolutional Neural Network	10
2.3	Convolutional Neural Network	11
2.3	3.1 Convolutions	11
2.3	3.2 Pooling	12
2.3	3.3 Max Pooling	13
2.3	3.4 Min Pooling	13

2.3.5	Average Pooling	14
2.3.6	Flatten Layer	14
2.3.7	Dense Layer	14
2.4 N	Model Training Functions	16
2.4.1	VGG19	16
2.4.2	EPOCH	16
2.4.3	Batch Size	17
2.4.4	Metrics	17
2.5 C	'ataract	17
2.5.1	Symptoms	18
2.5.2	Prevention	18
2.5.3	Diagnosis	18
2.5.4	Treatment	19
3 CHAPT	ER III SYSTEM ANALYSIS	20
3.1 S	ystem Overview	20
3.2 H	Iardware and Software Requirement	20
3.3 U	Jse Case Diagram	22
3.3.1	Actor	23
3.3.2	Use Cases	24
3.3.3	Association	24
3.4 U	Jse Case Narrative	24
3.5 S	wimlane Diagram	32
3.5.1	Swimlane Diagram for Register System	33
3.5.2	Swimlane Diagram for Login System	33
3.5.3	Swimlane Diagram for Diagnose System	34
4 CHAPT	ER IV SYSTEM DESIGN	35
4.1 I	Iser Interface Design	35

4.1.1	Main Menu	35
4.1.2	Login Page	36
4.1.3	Register Page	37
4.1.4	Diagnose Page	38
4.1.5	History Page	39
4.2 CI	ass Diagram	40
5 CHAPTI	ER V SYSTEM IMPLEMENTATION	41
5.1 M	achine Learning Model	41
5.1.1	Libraries	43
5.1.2	Dataset	43
5.1.3	Sectioning the Dataset	45
5.1.4	Data Cleaning	47
5.1.5	CNN Model	49
5.1.6	Training The Model	50
5.2 W	eb Service	51
5.2.1	Python Script	52
5.2.2	Running Flask Webservice	55
5.3 Us	ser Interface	56
5.3.1	Register System	57
5.3.2	Login System	60
5.3.3	Diagnosis System	62
5.3.4	History System	67
6 CHAPTI	ER VI SYSTEM TESTING	70
6.1 Te	esting Environment	70
6.1.1	Testing Scenario	70
6.2 Te	esting Summary	72
7 СНАРТІ	ER VII CONCLUSION AND FUTURE WORKS	73

7.1	Conclusion	73
7.2	Future Works	73
8 Refer	rences	75

LIST OF TABLES

Table 3.1 Use Case Narrative of User Registration	24
Table 3.2 Use Case Narrative of User Login	26
Table 3.3 Use Case Narrative of User Logout	28
Table 3.4 Use Case Narrative of View Diagnose History	29
Table 3.5 Use Case Narrative of Diagnosing Image	30
Table 6.1 Testing Scenario	70

LIST OF FIGURES

Figure 2.1 Convolutional Example Using Fashion MNSIT	11
Figure 2.2 Max Pooling Example	13
Figure 2.3 CNNs Layers Code Implementation Example	15
Figure 3.1 Use Case Diagram	23
Figure 3.2 Registration System Swimlane Diagram	33
Figure 3.3 Login System Swimlane Diagram	33
Figure 3.4 Diagnose System Swimlane Diagram	34
Figure 4.1 Main Menu User Interface Using Balsamic	35
Figure 4.2 Login Page User Interface Using Balsamic	36
Figure 4.3 Register Page User Interface Using Balsamic	37
Figure 4.4 Diagnose Page User Interface Using Balsamic	38
Figure 4.5 History Page User Interface Using Balsamic	39
Figure 4.6 Class Diagram	40
Figure 5.1 Machine Learning Model Flowchart	41
Figure 5.2 Jupyter Notebook File	42
Figure 5.3 Jupyter Notebook File Format	42
Figure 5.4 Python Packages For Machine Learning Model	43
Figure 5.5 Dataset Part-1	43
Figure 5.6 Dataset Part-2	43
Figure 5.7 Dataset Image Example-1	44
Figure 5.8 Dataset Image Example-2.	44
Figure 5.9 Sectioning Dataset Code Implementation Part-1	46
Figure 5.10 Sectioning Dataset Code Implementation Part-2	46
Figure 5.11 Data Cleaning Part-1	47
Figure 5.12 Data Cleaning Part-2	47
Figure 5.13 Data Cleaning Part-3	48
Figure 5.14 CNN Model Layer Code Implementation	49
Figure 5.15 Training Process and Result	50
Figure 5.16 Web Service Flowchart	51
Figure 5.17 Web Service Python Script Packages	52
Figure 5.18 Loading CNN Model	52
Figure 5.19 Image Processing	53

Figure 5.20 Predict Function.	54
Figure 5.21 Running Flask Web Service	55
Figure 5.22 User Interface Flowchart	56
Figure 5.23 Register System Controller	57
Figure 5.24 Register System View	57
Figure 5.25 Register System Service Function	58
Figure 5.26 Register System Repository Function	59
Figure 5.27 Login System Controller	60
Figure 5.28 Login System View	60
Figure 5.29 Login System Service Function.	61
Figure 5.30 Login System Repository Function	62
Figure 5.31 Diagnosis System Controller	62
Figure 5.32 Diagnosis System View Part-1	63
Figure 5.33 Diagnosis System View Part-2	64
Figure 5.34 Diagnosis System View Javascript Part-1	64
Figure 5.35 Diagnosis System View Javascript Part-2	65
Figure 5.36 Diagnosis System View Javascript part-3	66
Figure 5.37 Diagnosis System Service Function	66
Figure 5.38 Diagnosis System Repository Function	67
Figure 5.39 History System Controller	67
Figure 5.40 History System View	68
Figure 5.41 History System Service Function	68
Figure 5.42 History System Repository Function	69