

IMPLEMENTATION OF IOT-BASED SYSTEM FOR MONITORING ROOM CONDITION

UNDERGRADUATE FINAL PROJECT

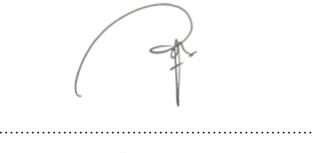
Submitted as one of the requirements to obtain Sarjana Komputer (S.Kom)

By:

RAIHAN AKBAR 001202000036

FACULTY OF COMPUTING
INFORMATICS STUDY PROGRAM
CIKARANG
APRIL 2023

PANEL OF EXAMINER APPROVAL


The Panel of Examiners declare that the undergraduate thesis entitled **Implementation of IOT-Based System for Monitoring Room Condition** that was submitted by Raihan Akbar majoring in Informatics from the Computing was assessed and approved to have passed the Oral Examination on 18 April 2023

Panel of Examiner

Cutifa Safitri, B.Sc, M.IT, Ph.D

Genta Sahuri, S.Kom, M.Kom

Rosalina, S.Kom, M.Kom

STATEMENT OF ORIGINALITY

In my capacity as an active student of President University and as the author of the final project undergraduate thesis/<u>final project</u>/business plan stated below:

Name : Raihan Akbar Student ID Number : 001202000036 Study Program : Informatics

Faculty : Computer Science

I hereby declare that my final project entitled "Implementation of IOT-Based System for Monitoring Room Condition" is to the best of my knowledge and belief, an original piece of work based on sound academic principles. If there is any plagiarism detected in this final project, I am willing to be personally responsible for the consequences of these acts of plagiarism, and will accept the sanctions against these acts in accordance with the rules and policies of President University.

I also declare that this work, either in whole or in part, has not been submitted to another university to obtain a degree.

Cikarang, 18 April 2023

Raihan Akbar

SCIENTIFIC PUBLICATION APPROVAL FOR ACADEMIC INTEREST

As a student of the President University, I, the undersigned:

Name : Raihan Akbar Student ID number : 001202000036 Study program : Informatics

for the purpose of development of science and technology, certify, and approve to give President University a non-exclusive royalty-free right upon my final report with the title:

Implementation of IOT-Based System for Monitoring Room Condition

With this non-exclusive royalty-free right, President University is entitled to converse, to convert, to manage in a database, to maintain, and to publish my final report. There are to be done with the obligation from President University to mention my name as the copyright owner of my final report.

This statement I made in truth.

Cikarang, 18 April 2023

Raihan Akbar

ADVISOR'S APPROVAL FOR PUBLICATION

As a lecturer of the President University, I, the undersigned:

Advisor's Name : Rosalina S.Kom, M.Kom

NIDN : 20060100053 Study program : Informatics

Faculty : Computer Science

declare that following final project:

Title of undergraduate final project : Implementation of IOT-Based System for Monitoring

Room Condition

Undergraduate final project author : Raihan Akbar Student ID number : 001202000036

will be published in journal / institution's repository / proceeding / unpublish.

Cikarang, 18 April 2023

IOT-BASED SYSTEM FOR MONITORING ROOM CONDITION

ORIGINALITY REPO	RT					
10% SIMILARITY INI	EX	9% INTERNET SO	URCES	2% PUBLICATIO	NS	0% STUDENT PAPERS
PRIMARY SOURCE	5					
	V.CO et Sour	ursehero.c	com			3
	sir.u et Sour	pm.edu.m	у			<1
	olus. et Sour	strathmor	e.edu			<1
	play et Sour	er.net				<1
	S.Ora	acle.com				<1
	f.pu et Sour					<1
7 ugs	pace et Sour	e.ug.edu.gl	n			<1
	osito et Sour	ory.lib.ncsu	ı.edu			<1
- C-	olar. et Sour	colorado.e	du			<1

Your text is likely to be written entirely by a human

The nature of Al-generated content is changing constantly. As such, these results should not be used to punish students. While we build more robust models for GPTZero, we recommend that educators take these results as one of many pieces in a holistic assessment of student work. See our <u>FAQ</u> for more information.

CHAPTER

INTRODUCTION

Background

A smart home is an implementation of the Internet of Thing (IoT).

Smart home means a comfortable home environment where home appliances and equipment can be automatically controlled from any place by an internet connection through various gadget devices or other networking devices.

Internet of Things (IoT) is a concept that aims to expand the benefits of Internet connectivit

Stats

Average Perplexity Score: 4822.031

A document's perplexity is a measurement of the randomness of the text

Burstiness Score: 23649.504

A document's burstiness is a measurement of the variation in perplexity

Your sentence with the highest perplexity, "Connection dependency", has a perplexity of: 175664

ABSTRACT

Smart home is a home condition that uses technology to control the situation of the house and electronic devices. Of course, this system is very useful to be able to monitor the condition of the house through gadgets. An example of this monitoring system includes fire alarms, ambient temperature, and humidity.

In this project, the author decided to use Arduino as a tool to receive and send sensor data to the database. The data from the database will be sent to the web application using an API. The author used the CodeIgniter 4 framework to create the web application. This web application is designed by the author to be more user-friendly and responsive so that it can be used on various gadgets.

This project aims to help people easily monitor utility usage at home, control electronic devices to reduce excessive electricity costs. The author hopes that this project can be useful for all Indonesian citizens.

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Merciful.

I would like to express his deepest gratitude to Allah SWT, the Creator of the universe, and to the Prophet Muhammad SAW, his family, and companions, for their guidance and blessings.

I would like to express my appreciation to my beloved parents for their endless prayers, love, patience, and help.

I would like to thank my final project advisor, Mam. Rosalina, for her patient guidance and motivation in the preparation of this final project report. I hope that Allah will bestow His blessings on Mam. Rosalina and her family without limit.

To my academic advisor, Sir. Genta sahuri thank you for the great patience and contributions to giving me an insight. May Allah always bless him and his family.

I would like to thank all friends who have provided consistent support and encouragement. I hope that Allah SWT will always bestow His blessings on friends and their families.

TABLE OF CONTENT

ABSTE	RACT	1
DEDIC	CATION	ii
ACKN	OWLEDGEMENTS	iii
TABLI	E OF CONTENT	iv
LIST C	OF FIGURE	vi
LIST C	OF TABLE	viii
CHAP	ΓER I	1
INTRO	DDUCTION	1
1.1	Background	1
1.2	Problem Statement	1
1.3	Final Project Objective	1
1.4	Scope and Limitation	2
1.4	.1 Scope	2
1.4	.2 Limitation	2
1.5	Final Project Methodology	2
1.6	Final Project Outline	3
CHAP	ΓER II	5
LITER	ATURE STUDY	5
2.1	Smart Home	5
2.2	Arduino	5
2.3	NodeMcu	5
2.4	DHT11	6
2.5	Flame Sensor	6
2.6	Rain Drop Sensor	7
2.7	Relay	7
CHAP	TER III	9
SYSTE	CM ANALYSIS	9
3.1	System Overview	9
3.2	Function Analysis	9
3.3	Use Case Diagram	9
3.4	Use Case Narrative	10
3.5	Swimlane Diagram	18
3.6	Hardware and Software Requirement	27
3.6	.1 Hardware Requirement	27

3.6.2	Software Requirement	28
CHAPTE	R IV	30
SYSTEM	DESIGN	30
4.1 U	ser Interface Design	30
4.2 W	Viring Diagram	32
CHAPTE	R V	34
SYSTEM	DEVELOPMENT	34
5.1 U	ser Interface Development	34
5.1.1	Login or Register Page	34
5.1.2	Home Page	35
5.1.3	Profile Page	36
5.1.4	Chart Page	37
5.2 W	Viring Diagram Implementation	37
5.2.1	Wiring Diagram NodeMcu	38
5.2.2	Wiring Diagram Arduino Wemos	38
5.3 A	pplication and Prototype System Details	39
5.3.1	Send Sensor Data	39
5.3.2	Notification	42
5.3.3	Read Data	43
5.3.4	Display and Filter Chart	45
5.3.5	Export Data	47
5.3.6	Map	48
CHAPTE	R VI	50
SYSTEM	TESTING	50
6.1 T	esting Environment	50
6.2 T	esting Scenario	50
6.2.1	Prototype System	50
6.2.2	Web Application	51
CHAPTE	R VII	52
CONCLU	SION AND FUTURE WORK	52
7.1 C	onclusion	52
7.2 F	uture Work	52
REFERE	NCES	53

LIST OF FIGURE

Figure 1. 1 Rapid Application Development (RAD) Design	3
Figure 2. 1 NodeMcu	6
Figure 2. 2 DHT11	6
Figure 2. 3 Flame sensor	7
Figure 2. 4 Rain drop sensor	7
Figure 2. 5 Relay 1 channel	8
Figure 3. 1 Use case diagram	10
Figure 3. 2 Register Swimlane	18
Figure 3. 3 Login Swimlane	19
Figure 3. 4 Profile Swimlane	20
Figure 3. 5 View Data Swimlane	21
Figure 3. 6 Edit Data Swimlane	22
Figure 3. 7 Export Swimlane	23
Figure 3. 8 Relay Swimlane	24
Figure 3. 9 Sensor Swimlane	25
Figure 3. 10 Map Swimlane	26
Figure 3. 11 Device Notification Swimlane	27
Figure 4. 1 Login or Register UI (Website)	30
Figure 4. 2 Home Page UI (Website)	31
Figure 4. 3 Profile Page UI (Website)	31
Figure 4. 4 Chart Page UI (Website)	32
Figure 4. 5 NodeMcu Wiring Diagram	32
Figure 4. 6 Arduino Wemos Wiring Diagram	33
Figure 5. 1 Login Page (Website)	34
Figure 5. 2 Register Page (Website)	34
Figure 5. 3 Home Page Sensor Section	35
Figure 5. 4 Home Page Gauge Chart	35
Figure 5. 5 Home Page Electronic Controls	36
Figure 5. 6 Home Page Map	36
Figure 5. 7 Profile Page	37
Figure 5. 8 Chart Page	37
Figure 5. 9 Wiring Diagram NodeMcu	38
Figure 5 10 Wiring Diagram Arduing Wemos	38

Figure 5. 11 Library Wifi	39
Figure 5. 12 Configure Wifi	39
Figure 5. 13 Define DHT Pin	39
Figure 5. 14 Define Pin Sensor	40
Figure 5. 15 Configure Setup	40
Figure 5. 16 Sensor Looping	41
Figure 5. 17 Send Data to Database	41
Figure 5. 18 Controller Send Database	42
Figure 5. 19 Notification WhatsApp	42
Figure 5. 20 Notification Telegram	43
Figure 5. 21 Controller Read Data	43
Figure 5. 22 JavaScript Read Data	44
Figure 5. 23 Controller Chart	45
Figure 5. 24 Template Chart Js	45
Figure 5. 25 Function Chart Js	46
Figure 5. 26 Date Filter	46
Figure 5. 27 Function Button Excel	47
Figure 5. 28 Controller Excel	47
Figure 5. 29 Map JavaScript 1	48
Figure 5. 30 Map JavaScript 2	49

LIST OF TABLE

Table 3. 1 Function Analysis	9
Table 3. 2 Narrative (UCN) Register	10
Table 3. 3 Narrative (UCN) Login	11
Table 3. 4 Narrative (UCN) View	12
Table 3. 5 Narrative (UCN) Profile	12
Table 3. 6 Narrative (UCN) Edit	13
Table 3. 7 Narrative (UCN) Export	14
Table 3. 8 Narrative (UCN) Map	15
Table 3. 9 Narrative (UCN) Notification	16
Table 3. 10 Narrative (UCN) Relay	16
Table 3. 11 Narrative (UCN) Send Data	17
Table 6. 1 Prototype System Testing	51
Table 6. 2 Web Application Testing	51