

WEB APPLICATION GUITAR TUNING USING MACHINE LEARNING WITH ML5.JS

UNDERGRADUATE THESIS

Submitted as one of the requirements to obtain Sarjana Komputer (S. Kom)

 $\mathbf{B}\mathbf{y}$

MUHAMMAD ABRAR ZAKIALMER 001201900058

FACULTY OF COMPUTER SCIENCE INFORMATION TECHNOLOGY PROGRAM CIKARANG March 2023

PANEL OF EXAMINER APPROVAL

The Panel of Examiners declare that the undergraduate thesis entitled **Web Application** Guitar Tuning Using Machine Learning with ml5.js

that was submitted by Muhammad Abrar Zakialmer majoring in Information Technology from the Computer Science was assessed and approved to have passed the Oral Examination on March $16^{\rm th}$, 2023

Panel of Examiner

Genta Sahuri, M.Sc

Chair of Panel Examiner

Dr. Hasanul Fahmi, M.Kom

Examiner I

STATEMENT OF ORIGINALITY

In my capacity as an active student at President University and as the author of the final project stated below:

Name : Muhammad Abrar Zakialmer

Student ID number : 00120190058

Study Program : Information Technology

Faculty : Computer Science

I hereby declare that my final project entitled "Web Application Guitar Tuning Using Machine Learning with ml5.js" is to the best of my knowledge and belief, an original piece of work based on sound academic principles. If there is any plagiarism detected in this final project, I am willing to be personally responsible for the consequences of these acts of plagiarism and will accept the sanctions against these acts in accordance with the rules and policies of President University.

I also declare that this work, either in whole or in part, has not been submitted to another university to obtain a degree.

Cikarang, 2023

Muhammad Abrar Zakialmer

SCIENTIFIC PUBLICATION APPROVAL FOR ACADEMIC INTEREST

As an academic community member of the President's University, I, the undersigned:

Name : Muhammad Abrar Zakialmer

Student ID number : 001201900058

Study program : Information Technology

for the purpose of development of science and technology, certify, and approve to give President University a non-exclusive royalty-free right upon my final report with the title:

"Web Application Guitar Tuning Using Machine Learning with ml5.js"

With this non-exclusive royalty-free right, President University is entitled to converse, to convert, to manage in a database, to maintain, and to publish my final report. There are to be done with the obligation from President University to mention my name as the copyright owner of my final report.

This statement I made in truth.

Cikarang, 2023

Muhammad Abrar Zakialmer

ADVISOR APPROVAL FOR JOURNAL/INSTITUTION'S REPOSITORY

As an academic community member of the President's University, I, the undersigned:

Name : Cutifa Safitri

NIDN : 20190900815

Study program : Information Technology

Faculty : Computing

declare that following thesis:

Title of Thesis : Web Application Guitar Tuning Using

Machine Learning with ml5.js

Undergraduate Thesis author : Muhammad Abrar Zakialmer

Student ID number : 001201900058

will be published in **journal** / **institution's repository** / **proceeding** / **unpublished.**

Cikarang, 2023

Cutifa Safitri, Ph,D

SIMILARITY INDEX REPORT

Final Draft

ORIGINALITY REPORT		
SIMILA	1% 10% 3% ARITY INDEX INTERNET SOURCES PUBLICATIONS	7% STUDENT PAPERS
PRIMAR	Y SOURCES	
1	kids.britannica.com Internet Source	2%
2	Submitted to University of Pretoria Student Paper	1%
3	www.ijsrd.com Internet Source	1%
4	www.nti-audio.com Internet Source	1%
5	Submitted to University of Greenwich	1%
6	Submitted to University of New Haven Student Paper	<1%
7	www.prepbytes.com Internet Source	<1%
8	intelliconnect-tech.com Internet Source	<1%
9	Submitted to Westcliff University Student Paper	<1%

SIMILARITY INDEX REPORT

Stats

Average Perplexity Score: 78.038

A document's perplexity is a measurement of the randomness of the text

Burstiness Score: 73.241

A document's burstiness is a measurement of the variation in perplexity

Your sentence with the highest perplexity, "This chapter contains descriptions of Guitar Tuning, Machin Learning in ml5.js, Web Applications, Related Work, and Fast Fourier Tramsfprm Algorithms.", has a perplexity of: 303

© 2022-2023 GPTZero

ABSTRACT

The field of machine learning has grown rapidly in recent years and is now widely used to identify patterns in data and make predictions or decisions. In today's fast-paced world, musicians are constantly looking for ways to improve their skills and performance. However, tuning a guitar can be a difficult and time-consuming task, depending on the musician's ears to detect the right note. With modern technology, machine learning algorithms can automate this process, simplifying guitar tuning. Tuning a guitar is a complex process of determining the frequencies of the strings and tuning them to the correct pitch. Standard, Alternate, and Custom Tuning are the three most popular guitar tuning styles, each with their own set of challenges. Using waterfall model method can be more precise to make this project come true. With help from ml5.js library this project can access the microphone and do pitch detection so this project will be running as expected. The result obtained from this study are creation of web-based application of tuning guitar by implement waterfall model method, Fast Fourier Transform Algorithm, anf ml5.js library. The name of this project will be "G-Tune"

DEDICATION

I dedicated this final project to Allah swt. And my family

ACKNOWLEDGEMENT

I would like to express my thanks and appreciation to those who supported and assisted me during the final project period. With great respect and respect, I would like to express my gratitude to:

- 1. Allah swt, for giving grace and gift, until I can finish this project to completion.
- 2. My family, that always support me when I struggle and stuck on this project, and thank you for your prayers
- 3. Myself, for wanting to work together and always being strong to face all mistakes
- 4. My support system, Rahma Amalia Amanda, who always cheer me up when I was sad or struggle to do this project.
- 5. My Bestfriend, Ida Ayu Mera Indiragani and Zaenur Ismail Widyatmoko. That supporting me with a lot of reference and cheer me up to graduate together.
- 6. Ms. Cutifa Safitri, Ph. D, as my final project advisor, who always guides me to be better and provides many suggestions and lessons that finally allowed me to complete this final project.
- 7. All lecture of Faculty of Computing, has given a lot of learning, from when I entered campus until now I have completed this project

TABLE OF CONTENTS

ABSTI	RACT	i
DEDIC	CATION	ii
ACKN	NOWLEDGEMENT	iii
TABLI	E OF CONTENTS	iv
LIST C	OF TABLES	viii
LIST C	OF FIGURES	ix
1 CHA	APTER I INTRODUCTION	1
1.1	Background	1
1.2	Problem Statement	1
1.3	Objectives	2
1.4	Scope and Limitations	2
1.4	.4.1 Scope	2
1.4	.4.2 Limitations	2
1.5	Project Methodology	3
1.6	Final Project Outline	4
2 CHA	APTER II LITERATURE REVIEW	6
2.1	Web Application	6
2.2	Guitar Tuning	7
2.3	Machine Learning in ml5.js	7
2.4	Fast Fourier Transform (FFT) Algorithm	8
2.5	Related Work	11
2.:	.5.1 GuitaTuna by Yousician	11
2.:	.5.2 Tuner-online.com	12
2.:	.5.3 Related Work Comparison	12

3 CHAPT	ER III SYSTEM ANALYSIS	13
3.1 S	ystem Overview	13
3.2 F	unction Analysis	13
3.3 U	se Case Diagram	14
3.4 U	se Case Narrative	14
3.5 S	wim Lane Diagram	20
3.5.1	Swim Lane Diagram for Main Menu Page	20
3.5.2	Swim Lane Diagram for Default Tuning Guitar Page	21
3.5.3	Swim Lane Diagram for Alternative Tuning Guitar Page	21
3.5.4	Swim Lane Diagram for Customize Tuning Guitar Page	21
3.5.5	Swim Lane Diagram for Learn Guitar Page	22
3.5.6	Swim Lane Diagram for Transpose Tuning Guitar Page	22
3.6 H	Tardware and Software Requirement	23
3.6.1	Hardware Requirement	23
3.6.2	Software Requirement	23
4 CHAPT	ER IV SYSTEM DESIGN	25
4.1 U	Ser Interface Design	25
4.1.1	Homepage	25
4.1.2	Learn Page	26
4.1.3	Tuning Page	26
4.1.4	Default Tuning Page	27
4.1.5	Alternative Tuning Page	28
4.1.6	Custom Tuning Page	28
4.1.7	Transpose Tuning Page	29
4.2 C	lass Diagram	29
5 СНАРТ	ER V SYSTEM IMPLEMENTATION	30
5.1 U	ser Interface	30

5.1.1	Home Page30
5.1.2	Learn Page
5.1.3	Tuning Page31
5.1.4	Default Tuning Page32
5.1.5	Alternative Tuning Page32
5.1.6	Customize Tuning Page
5.1.7	Transpose Tuning Page
5.2 A	application Details34
5.2.1	Home Page35
5.2.2	Learn Page37
5.2.3	Tuning Page
5.2.4	Default Tuning Page39
5.2.5	Alternative Tuning Page44
5.2.6	Custom Tuning Page
5.2.7	Transpose Tuning Page46
5 СНАРТ	ER VI SYSTEM TESTING47
6.1 T	esting Environment47
6.2 T	esting Scenario47
6.2.1	HomePage Testing Scenario47
6.2.2	Learn Page Testing Scenario
6.2.3	Tuning Page Testing Scenario50
6.2.4	Default Tuning Page Testing Scenario52
6.2.5	Alternative Tuning Page Testing Scenario54
6.2.6	Customize Tuning Page Testing Scenario56
6.2.7	Transpose Tuning Page Testing Scenario
7 СНАРТ	ER VII CONCLUSION AND FUTURE WORKS61
71 (onclusion 61

7.2	Future Works	61
REFER	RENCES	62

LIST OF TABLES

Table 2.1 Table of Related Work Comparison	12
Table 3.1 Table of Function Description	14
Table 3.2 Use Case Narrative for "Access Main Page" Use Case	15
Table 3.3 Use Case Narrative for "Default Tuning Guitar" Use Case	16
Table 3.4 Use Case Narrative for "Alternative Tuning Guitar" Use Case	17
Table 3.5 Use Case Narrative for "Customize Tuning Guitar" Use Case	18
Table 3.6 Use Case Narrative for "Learn Guitar" Use Case	19
Table 3.7 Use Case Narrative for "Learn Guitar" Use Case	20
Table 6.1 Table of HomePage Testing Scenario	48
Table 6.2 Table of Learn Page Testing Scenario	49
Table 6.3 Table of Tuning Page Testing Scenario	50
Table 6.4 Table of Default Tuning Page Testing Scenario	53
Table 6.5 Table of Alternative Tuning Page Testing Scenario	54
Table 6.6 Table of Customize Tuning Page Testing Scenario	56
Table 6.7 Table of Transpose Tuning Page Testing Scenario	59

LIST OF FIGURES

Figure 1.1 Waterfall Model Method Phase	3
Figure 2.1 Process of FFT Algorithm	9
Figure 2.2 Process of FFT Algorithm [5]	9
Figure 2.3 Process of FFT Algorithm [6]	11
Figure 2.3 GuitaTuna by Yousician	12
Figure 2.4 tuner-online.com	12
Figure 3.1 Use Case Diagram	14
Figure 3.2 Swim Lane Diagram of Main Menu Page	21
Figure 3.3 Swim Lane Diagram of Main Menu Page	21
Figure 3.4 Swim Lane Diagram of Main Menu Page	21
Figure 3.5 Swim Lane Diagram of Main Menu Page	22
Figure 3.6 Swim Lane Diagram of Main Menu Page	22
Figure 3.7 Swim Lane Diagram of Main Menu Page	22
Figure 4.1 Wirefram Design of Home Page	25
Figure 4.2 Wirefram Design of Learn Page	26
Figure 4.3 Wirefram Design of Tuning Page	26
Figure 4.4 Wirefram Design of Default Tuning Page	27
Figure 4.5 Wirefram Design of Alternative Tuning Page	28
Figure 4.6 Wirefram Design of Custom Tuning Page	28
Figure 4.7 Wirefram Design of Transpose Tuning Page	29
Figure 4.7 Class Diagram of The Application	29
Figure 5.1 User Interface of Home Page	30
Figure 5.2 User Interface of Learn Page	31
Figure 5.3 User Interface of Tuning Page	31
Figure 5.4 User Interface of Default Tuning Page	32
Figure 5.5 User Interface of Alternative Tuning Page	33
Figure 5.6 User Interface of Customize Tuning Page	33
Figure 5.6 User Interface of Customize Tuning Page	34
Figure 5.7 Source Code of Home Page	35
Figure 5.8 Source Code of Home Page CSS	36
Figure 5.9 Source Code of Learn Page Figure 5.10 Learn Page CSS.	37
Figure 5.11 Source Code of TuningPage	38

Figure 5.12 Source Code of Default Tuning Po	age39
Figure 5.13 JavaScript of Default Tuning	Figure 5.14 JavaScript of
Default Tuning	40
Figure 5.15 JavaScript of Default Tuning	41
Figure 5.16 JavaScript of Default Tuning	41
Figure 5.17 JavaScript of Default Tuning	42
Figure 5.18 JavaScript of Default Tuning	43
Figure 6.5 Testing Scenario of can access the	Tuning Page – Scenario 1.151
Figure 6.6 Testing Scenario of can click the D	Default Tuning – Scenario 1.251
Figure 6.7 Testing Scenario of can click the A	lternative Tuning – Scenario 1.3
	52
Figure 6.8 Testing Scenario of can click the C	Sustom Tuning – Scenario 1.252
Figure 6.9 Testing Scenario of can access the	Default Tuning Page – Scenario
1.1	53
Figure 6.10 Testing Scenario of can capture to	he frequency – Scenario 1.254
Figure 6.11 Testing Scenario of can access the	e Alternative Tuning Page –
Scenario 1.1	55
Figure 6.12 Testing Scenario of can access the	e dropDown Menu– Scenario 1.2
	55
Figure 6.13 Testing Scenario of can capture to	he frequency – Scenario 1.356
Figure 6.14 Testing Scenario of can access the	e Customize Tuning Page–
Scenario 1.1	57
Figure 6.15 Testing Scenario of can access the	e dropDown Menu– Scenario 1.2
	57
Figure 6.16 Testing Scenario of can capture to	he frequency – Scenario 1.358
Figure 6.17 Testing Scenario of can access the	e Transpose Tuning Page–
Scenario 1.1	59
Figure 6.18 Testing Scenario of can access the	e dropDown Menu– Scenario 1.2
	59
Figure 6.19 Testing Scenario of can capture the	he frequency – Scenario 1.360