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Abstract—In this paper, machine learning-based techniques 

are used to solve and analyze the modulation format recognition 

problem. The combination of intelligent software and high-

performance hardware provides a large scope for innovation in 

optical networking. Machine learning algorithms can use a large 

amount of data available from the network monitors to learn and 

make the network more robust. This is a problem in optical 

communication that consists of defining the type of digital 

modulation process in which an electrical signal should be sent. 

A dataset to represent realistic transmission behaviors was 

generated using a simulator based on a Gaussian noise model. A 

multi-layer perceptron was used and tested with different 

architectures to show that a high level of accuracy is achievable 

with machine learning. An analysis of the input features was 

made by using the select K best features method. Finally, an 

attempt to visualize the data in 2-dimension was made using the 

Principal Component Analysis (PCA) and t-distributed 

Stochastic Neighbor Embedding (t-SNE) methods to reduce the 

dimensionality of the input features and see their relationships. 

Keywords—Machine Learning, Modulation Format 
Recognition, Optical Network, PCA, t-SNE 

I. INTRODUCTION 

Optical networks establish the essential actual framework 
of all large-provider networks around the world. On account 
of the high limit, minimal effort, and numerous different 
properties, there is no sign that a substitute innovation may 
show up withing a reasonable time frame. It constitutes the 
physical infrastructure of all major network service providers 
worldwide, and is able to provide high data transmission speed 
while having a low cost, as well as other properties. Judging 
from the perspective of internet traffic, it is expected that the 
number of services supported by optical networks would 
significantly increase in the upcoming years. Thus, the 
network should be adaptable to it by using the data from 
previous measurements [1]–[3].  

Modern optical transmitters and receivers provide great 
flexibility in modulation format, carrier frequency, and 
utilized bandwidth. Given that an arbitrary modulation format 
can be adopted at the transmitter side, the information 
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regarding the modulation format may not always be available 
at the receiver side. It may affect signal detection, signal 
demodulation, as well as signal processing [4]–[6].  

Given the condition where the detection may not be 
straightforward, it can be approached by using machine 
learning techniques. Even so, the use of machine learning 
techniques with different neural network training in optical 
communication is still in its infancy. It is considered a 
paradigm shift for designing optical networks and the systems 
in the future. Confidently, it is possible to identify the most 
important features that affect the accuracy and efficiency of 
identifying the modulation format at the receiver side by 
having rigorous training and analyzing the data using machine 
learning [7]–[12]. 

In this paper, we propose machine learning-based 
techniques to identify and analyze the modulation format. 
Both tasks are done at the same time to get a better 
understanding of it. It will further help in optical signal 
monitoring and future elastic optical networks [13]. 

The rest of this paper is organized as follow. Section 2 
surveys the literatures that conducted research on similar 
topic. Then section 3 elaborates the methodology used for this 
work. Next, section 4 discusses the obtained results. Finally, 
section 5 concludes this paper. 

II. LITERATURE SURVEY 

In adaptive optical communication systems, users’ 
demand and channel’s condition determine the rate of data 
transmission channel. Since the modulation format may be 
changed at the transmitter side, the receiver requires the 
information in order to identify different modulation formats. 
Hence coherent receivers with Modulation Format 
Identification (MFI) can be used to address this problem [14]–
[17]. 

Several works on MFI that had been conducted by other 
researchers are summarized in Table 1. 
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TABLE 1. SUMMARY OF WORKS PRESENTED IN THIS FIELD 

Authors Objective Method Advantage Disadvantage 

Khan et al. 
(2016) [18]  

MFI in coherent receivers 
using Deep Machine Learning 

Uses amplitude histograms obtained 
with the help of constellation 

diagrams and employs ANN and 
DNN for MFI 

High accuracy 

It could not recognize the high 
order PSK formats due to the 
similitude of their amplitude 

histograms 

Bilal et al. 
(2015) [19] 

Blind MFI in coherent 
receivers using Deep Machine 

Learning 

Peak-to-Average Power Ratio 
(PAPR) of the received data samples 

High accuracy 
It requires previous knowledge as 
well as huge values of the Optical 

Signal to Noise Ratio (OSNR) 

Adles et al. 
(2014) [20] 

Blind MFI from physical layer 
characteristics 

Electric field distributions and 
histograms 

Excellent 
classification rates 

Computation process is quite 
complex 

Liu et al. 
(2014) [21] 

MFI based on power 
distributions of received signals 

for digital coherent receivers 

Proposes a way to use the 
distrbution properties of received 

signals. The MFI used power 
distribution 

Perform well 
identification 

Adjustment of various thresholds 
are requires 

Bo et al. 
(2016) [22] 

Blind MFI software-defined 
optical network using 

techniques of image processing 

Used Voronoi diagrams and 
obtained the binary images for MFI 

High accuracy 
Requires huge amount of samples 

for 16-QAM identification 

III. METHODOLOGY

In this paper, we focus on MFI with neural network-
based implementation, optimization, feature selection, and 
data visualization. The strategies include the optimization 
of the model to achieve more realistic predictions based on 
input features. The work plan for this paper is summarized 
in Fig. 1. 

Fig. 1. Work plan for the paper 

Since the analysis requires dataset, and only big network 
providers have the access to it, this work utilizes a 
simulation model an optical transmission channel –
including its non-linearities– to generate the dataset. It 
represents a realistic transmission behaviour based on 
Gaussian Noise (GN) model.  

With the completion of input feature selection and 
simulation of the non-linear optical transmission channel, a 
dataset of 100,000 samples is generated. This dataset is then 
be fed into the machine learning technique to develop the 
model. Since the model may have a lot of features put into 
high dimension, and high dimensionality creates overfitting 
model that leads to the decrement of capability to generalize 
apart from the entries of the training set due, thus the 
number of features is reduced. Besides, measurement of 
some of the features can be costly for an organization, while 
some others are difficult to be measured. Thus, having a 
smaller number of input features while having an excellent 
classification score will be highly desirable. In this work, 

Principal Component Analysis (PCA) is employed. It 
recognizes a rundown of the principal axes to portray the 
fundamental dataset prior to positioning them as per the 
measure of variance caught by each.  

There are 11 input features used in this paper, and they 
are shown in Table 2. The first one is symbol rate, which 
defines the number of changes in the symbol occurring 
every second. One symbol may carry multiple bits. This 
parameter is denoted in baud. The second one is roll-off, 
which defines the bandwidth occupied beyond Nyquist 
bandwidth. This parameter varies between 0 to 1. Next is 
the launch power, which determines the amount of 
distortion. Besides, in the channel transmission, data is 
monitored throughout the network while load balancing is 
done to maintain the bearable load on each channel. After 
that, there is also a property by which a signal spreads in 
time, known as dispersion. Then, as light travels through a 
medium, nonlinear effects are present. Its index is 
calculated for linearly polarized light. During transmission, 
noise is normally non-neglectable. A noise figure is a 
measure of the degradation in signal to noise ratio, and can 
be used in association with receiver sensitivity. At the same 
time, signal power lost during transmission is known as 
loss, which is normally denoted in dB. Last, the channel grid 
and span are also used. 

Most of the features are independent, although some of 
them are not. For instance, launch power and channel grid 
are dependent on symbol rate. The dataset is created using 
Python, and the output is in the form of Comma-separated 
Values (CSV) format. 

TABLE 2. INPUT FEATURES USED IN THIS PAPER 

Feature Value 

Symbol Rate 30 – 90 Gbaud/s 

Roll-off 0.01 – 0.05 

Launch Power f (symbol rate) 

Channel Load 1 – 120 

Dispersion 4 – 21 ps/nm/km 

Non-linear Index 0.8 – 1.6 l/W.km 

Loss 0.15 – 0.2 dB/km 

Span Count 1 – 50 

Span Length 40 – 120 km 

Noise Figure 4 – 6.5 dB 

Channel Grid f (symbol rate) 
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In generating the dataset, the transmission is simulated 
along with GN. It is desirable to have lowest possible loss 
to improve the OSNR, as well as a large area to avoid 
nonlinear distortion [23], [24]. However, it was practically 
impossible to have one due to huge accumulated dispersion. 
As the technology has advanced, it is now possible to have 
optical dispersion compensation in the transmission links. 
For instance, a 5500 km channel operates at 40 Gbaud/s 
having interference of approximately 800 baud. Because of 
the overlap, optical field in time-domain randomizes, 
resulting in a statistically independent zero-mean Gaussian. 
The amplitude of the optical field that becomes random 
along with the intra-channel and inter-channel interactions 
that are nonlinear. Thus, the non-linear interference can be 
interpreted as random noise by the receiver. Statistical 
distribution of the non-linear interference noise (NLI) is 
statistically independent and zero-mean Gaussian 
distributed. Thus, for low to moderate NLI, the effect can 
be assumed to be GN. 

In the simulation, the transmitter side considered 
ordinary highlights such as span count, span length, and 
symbol rate on an optical connection. It also employs 
several bit-modulation techniques, and the OSNR penalties 
have been taken as 0.5 dB for Dual-Polarized BPSK (DP-
BPSK), 1 dB for DP-QPSK, 2 dB for DP-16QAM, and 3 
dB for DP-64QAM. The optical transmission channel is 
modelled with GN approach.  

After having the dataset, it is partitioned into three parts. 
The first one is validation data, which compromises of 
20,000 entries. Its presence is able to prevent overfitting, 
thus improving the model’s accuracy. Next, the training 
data has 60,000 entries. Finally, the test dataset is 
compromised with 20,000 entries. The dataset is fed into 
Multilayer Perceptron (MLP) as a feedforward model with 
supervised learning. The training is done via 
backpropagation algorithm. 

Then, the feature is analysed using a feature selection 
method. The aim is to check if is it possible to decrease the 
number of features used in the modulation classification 
without a loss in terms of accuracy. In this work, select K 
best features method is utilized. It is a forward sequential 
selection method, which takes K features that achieve the 
highest scores according to individual performance 
measurement. 

Finally, the result is visualized into a two-dimensional 
space. There are two algorithms utilized in this work. The 
first one is Principal Component Analysis (PCA). However, 
it only captures the one that has linear relationship [25]. The 
second one is t-Distributed Stochastic Neighbour 
Embedding (t-SNE). It is able to improve the data-
visualization as it captures components in non-linear 
relationship. 

IV. RESULT AND DISCUSSION 

This chapter begins with brief overview on the 
generated dataset. The discussion then continues to the 
MLP section, which covers the classification accuracy, 
training time, as well as the confusion matrices. After that, 
the performance of each feature is evaluated based on its 
accuracy. Finally, the data visualization with PCA and t-
SNE is elaborated by the end of this chapter. 

The generated dataset has the eleven features included 
to form 100,000 samples in CSV file. The data is utilized to 
serve as dataset for MLP models. The snapshot of the 
dataset is given in Fig. 2. 

 

Fig. 2. Snapshot of the dataset 

Next, the MLP is designed to have four architectures. 
The first one has one hidden layer with five neurons. Unless 
stated otherwise, this architecture is written as [1:(5)] for the 
rest of the paper. The second one has 1 hidden layer with 
ten neurons, and is written as [1:(10)]. Then the third one 
has one hidden layer with a hundred neurons, and is written 
as [1:(100)]. Finally, the last one has two hidden layers with 
a hundred neurons and ten neurons each [2:(100x10)]. The 
layers use Rectified Linear Unit (ReLU) activation function, 
and the output layer uses soft-max activation function. One 
batch has a size of a hundred samples, and has learning rate 
of 0.01. the Random Uniform function, which generates 
weights with a uniform distribution, is used to initialize the 
weights between -0.05 to 0.05. 

The models are then run with the dataset that consists of 
training, validation, and testing data. Fig. 3 shows the 
classification accuracy on validation data on the base of the 
number of epochs run. In this work, the maximum epoch is 
set to be 500. It is observed that all architectures follow a 
similar saturation behavior after reaching a certain number 
of epochs. The model with architecture of [2:(100x10)] 
reaches convergence earlier than the other three models. It 
is followed with the one with architecture of [1:(100)]. 

 

Fig. 3. Accuracy of classification per epochs for the four models  

Next, the performance is evaluated by taking the 
training time into account. Fig. 4 shows the training time 
required for each model to reach convergence. All the 

Symbol Rate Roll-off
Channel

Load
Dispersion Loss

Span

Count

Modulation

Classification

65000000000 0.03 70 1.20E-05 4.60E-05 10 1

63000000000 0.05 77 1.72E-05 4.00E-05 6 2

45000000000 0.01 95 5.15E-06 3.56E-05 2 2

44000000000 0.04 53 1.88E-05 3.93E-05 6 0

58000000000 0.04 115 1.88E-05 3.77E-05 17 1

51000000000 0.01 14 2.10E-05 3.81E-05 4 2

86000000000 0.01 21 1.61E-05 3.52E-05 3 2

41000000000 0.02 62 7.26E-05 4.07E-05 1 3

59000000000 0.03 107 1.74E-05 3.59E-05 3 2

54000000000 0.02 114 2.10E-05 4.00E-05 14 1

58000000000 0.01 68 9.48E-06 3.72E-05 2 3

88000000000 0.04 48 1.99E-05 4.12E-05 16 1

63000000000 0.01 72 1.18E-05 3.83E-05 16 0

84000000000 0.04 47 1.29E-05 4.29E-05 20 0
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models do not have significant difference. The longest time 
of 1200 s is required for the model of [2:(100x10)], while 
the shortest one of 1000 s is required for the model of 
[1:(10)]. 

 

Fig. 4. Model training time to reach convergence 

After that, the evaluation takes the confusion matrices 
of each architecture into account. It depicts the number of 
correct classification as well as the wrong one, including 
where it goes wrong. Overall, the accuracy ranges between 
93.59% to 98.55%. 

Fig. 5 shows the confusion matrix for the first 
architecture. The classification is confused mostly in the 
DP-BPSK and DP-QPSK scenario, with accuracy of 
83.63% and 90.34%, respectively. Even though DP-
16QAM and DP-64AM also has error, it is significantly less 
than PSK scenario with the accuracy of 99.89% and 
99.78%, respectively. Overall, this architecture achieves 
accuracy of 93.59% throughout all scenarios. 

Fig. 6 shows the confusion matrix of the second 
architecture. The result is similar to the previous 
architecture, where PSK-type modulation has lower 
accuracy compared to QAM-type. In this case, the model 
has accuracy of 90.60% and 95.23% for DP-BPSK and DP-
QPSK, respectively. On the other hand, DP-16QAM and 
DP-64QAM are able to be classified perfectly with 
accuracy of 100%. Overall, this architecture achieves 
accuracy of 96.64% throughout all scenarios. 

Fig. 7 shows the confusion matrix of the third 
architecture. It is able to achieve higher accuracy compared 
to the previous one, where the classification of DP-BPSK 
and DP-QPSK has accuracy of 94.64% and 98.58%, 
respectively. Similar to the second architecture, DP-
16QAM and DP-64QAM are able to be classified perfectly 
with the accuracy of 100%. Overall, this architecture 
achieves accuracy of 98.55% throughout all scenarios. 

Fig. 8 shows the confusion matrix of the fourth 
architecture. It is able to achieve higher accuracy compared 
to the previous one, but only for DP-BPSK. The accuracy 
for this bit-modulation is 97.97%. for DP-QPSK, the 
accuracy is less than the third architecture with the number 
of 96.62%. As for the DP-16QAM and DP-64QAM, the 
accuracy reaches 100%, similar to the second and the third 
architecture. Overall, this architecture achieves accuracy of 
98.42% throughout all scenarios, which is 0.13% lower than 
the third architecture. 

Based on the evaluations, the fourth architecture is the 
best option to choose. Even though it requires longest 

training time, and has slightly lower classification accuracy 
compared to the third architecture, it converges fastest 
among the other architectures.  

 

 

Fig. 5. Confusion matrix for MLP architecture of [1:(5)] 

 

 

Fig. 6. Confusion matrix for MLP architecture of [1:(10)] 

 

 

Fig. 7. Confusion matrix for MLP architecture of [1:(100)] 
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Fig. 8. Confusion matrix for MLP architecture of [2:(100x10)] 

Then, the features are evaluated based on its accuracy. 
The measurement is performed by using ��  test. Each 
feature is fitted into the fourth architecture. The accuracy 
level and where the convergence takes place are observed 
for each feature. 

Table 3 shows the evaluation for each feature. It is 
sorted in descending order based on the ��. The first three 
features score below 70% on the accuracy, and only the last 
four features score higher than 90%. According to the data, 
it is possible to achieve high accuracy while saving 
resources at the same time by using just four features. 

TABLE 3. MLP ACCURACY USING K BEST FEATURES 

K Feature �� 
MLP 

Accuracy 
Epoch 

1 Span Count 4625.19 61.76% 49 

2 Symbol Rate 26.10 65.30% 54 

3 Channel Grid 24.56 65.57% 59 

4 Span Length 17.09 78.32% 81 

5 Launch Power 13.79 81.55% 114 

6 Noise Figure 5.78 86.86% 134 

7 Dispersion 4.86 87.56% 127 

8 Non-linear Index 2.74 92.20% 100 

9 Loss 1.58 94.82% 106 

10 Roll-off 0.55 95.72% 62 

11 Channel Load 0.23 98.68% 98 

Finally, the dimensionality is reduced and presented 
within two-dimensional space. The first one is reduced by 
using PCA algorithm, and the result is depicted in Fig. 9. 
The data has four parts, where each part has different 
number of features. The first one has 2 features, the second 
one has 4 features, the third one has 8 features, while the 
last one has all 11 features in. The DP-BPSK is presented in 
black, DP-QPSK is presented in purple, DP-16QAM is 
presented in blue, and DP-64QAM is presented in cyan. The 
pattern behind the data is hard to be interpreted. Since PCA 
captures data with linear relationship only, then it implies 
that the features do not have linear relationship. 

Then Fig. 10 visualizes the data with t-SNE algorithm 
for 2, 4, 8, and 11 features. It provides a more interpretable 
data compared to PCA algorithm. The data shows that DP-
16QAM and DP-64QAM can be differentiated relative 
easily. On the other hand, DP-BPSK and DP-QPSK are 

indistinct in most of the areas, making it hard to classify. 
Even though there is no definite cluster, there exist different 
areas being formed based on three divisions. The first one 
is for DP-64QAM, the second one is DP-16QAM, and the 
last one is the mixture between DP-BPSK and DP-QPSK. 

Also, using only 2 features or 4 make the data to have a 
direction that modifies the classification. In this case, 
blurriness occurs near the boundaries of the decision 
regions. By adding more features, e.g., by using 8 or 11 
features, there are different directions to improve the 
classification. Then the area of DP-BPSK and DP-QPSK 
ends, it is normally leads to DP-16QAM, then followed by 
DP-64QAM. Using those features, the aforementioned 
more-specific cases can be separated with higher accuracy. 

(a) (b) 

(c) (d) 
Fig. 9. Data visualization using PCA for (a) 2 features, (b) 4 features, 
(c) 8 features, and (d) 11 features.

(a) (b) 

(c) (d) 
Fig. 10. Data visualization using t-SNE for (a) 2 features, (b) 4 features, 
(c) 8 features, and (d) 11 features 

V. CONCLUSION

Through this work, a machine learning-based 
techniques as an approach to solve modulation format 
prediction. Due to the lack of industrial data of optical 
transmission channels, a simulator is designed to mimic a 
non-linear optical transmission channel using 11 input 
features with industrial input ranges. Using the dataset 
generated using this simulator, a machine learning-based 
model is developed. The performance of various layouts of 
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neural networks have been measured, as well as the attempt 
on achieving the mathematical performance of optimal 
decisions. The work also covers feature selection to reduce 
the number of input features. Confidently, this would help 
organizations in cutting the cost of measurement 
instruments. Finally, the data is visualized in different forms 
to help establish a relationship among the features.  

The MLP model allows the modulation identification 
from a dataset generated using a simulator with high 
accuracy. However, there have been certain areas in this 
work which will require attention in future and can emerge 
as great scope of development from the perspective of 
modulation format identification and optical performance 
monitoring. Other emerging technologies in the field of ML 
like Convolutional Neural Network (CNN) can be used to 
keep or improve the accuracy performance using less 
features. Besides, the industrial measurements from real 
optical transmission channels would provide better quality 
dataset to train the model. The data, –when available– can 
be used for the development. Finally, another possible work 
would be to convert this problem as regression. Instead of 
directly classifying the best method to send the electrical 
signal, the aim could be to predict the OSNR value.  
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