

IMPLEMENTATION OF PUBLIC HEALTH CONSULTATION

USING FLUTTER FRAMEWORK

By

Yosua Nathanael Simbolon

001201800140

A Final Project

Submitted to the Faculty of Computing

President University

In Partial Fulfilment of the Requirements

For the Degree of Bachelor of Science

Information Technology

Cikarang, Bekasi, Indonesia

December 2021

Copyright by

Yosua Nathanael Simbolon

2021

IMPLEMENTATION OF PUBLIC HEALTH CONSULTATION USING

FLUTTER FRAMEWORK

By

Yosua Nathanael Simbolon

Approved:

Rila Mandala, Ph.D

Final Project Advisor

Nur Hadisukmana, M.Sc

Program Head of Information Technology

Rila Mandala, Ph.D

Dean of Faculty of Computing

STATEMENT OF ORIGINALITY

In my capacity as an active student at President University and as the author of the thesis/final

project/business plan stated below:

Name : Yosua Nathanael Simbolon

Student ID number : 001201800140

Study Program : Information Technology

Faculty : Computing

I hereby declare that my thesis/final project/business plan entitled " IMPLEMENTATION

OF PUBLIC HEALTH CONSULTATION USING FLUTTER FRAMEWORK" is to the

best of my knowledge and belief, an original piece of work based on sound academic principles.

If there is any plagiarism detected in this thesis/final project/business plan, I am willing to be

personally responsible for the consequences of these acts of plagiarism and will accept the

sanctions against these acts in accordance with the rules and policies of President University.

I also declare that this work, either in whole or in part, has not been submitted to another

university to obtain a degree.

 Cikarang, December 22, 2021

 (Yosua Nathanael Simbolon)

SCIENTIFIC PUBLICATION APPROVAL FOR ACADEMIC INTEREST

As an academic community member of the President's University, I, the undersigned:

Name : Yosua Nathanael Simbolon

Student ID Number : 001201800140

Study Program : Information Technology

for the purpose of development of science and technology, certify, and approve to give

President University a non-exclusive royalty-free right upon my final report with the title:

IMPLEMENTATION OF PUBLIC HEALTH CONSULTATION USING FLUTTER

FRAMEWORK

With this non-exclusive royalty-free right, President University is entitled to converse, to

convert, to manage in a database, to maintain, and to publish my final report. There are to be

done with the obligation from President University to mention my name as the copyright owner

of my final report.

This statement I made in truth.

Cikarang, December 22, 2021

(Yosua Nathanael Simbolon)

ADVISOR APPROVAL FOR JOURNAL/INSTITUTION’S REPOSITORY

As an academic community member of the President's University, I, the undersigned:

Name : Rila Mandala, Ph.D

ID Number : 20020200021

Study Program : Information Technology

Faculty : Computing

declare that following final project:

Title of Final Project : Implementation of Public Health Consultation Using Flutter

Framework

Final Project Author : Yosua Nathanael Simbolon

Student ID Number : 001201800140

will be published in journal / institution’s repository / proceeding / unpublish.

Cikarang, December 17, 2021

(Rila Mandala, Ph.D)

SIMILARITY INDEX REPORT

i

ABSTRACT

The longer the rate of human growth in Indonesia is increasing, this situation

makes the need for health increases for example the medicine and medical personnel.

Many people are unable to go to the nearest hospital or medical clinic due to far

distances, take a lot of time to come, and cost issues. The evolution of technology

allows people to do everything instantly and faster, this is a very big opportunity to

make something useful, especially in the human health sector. This final project will

make a mobile application to make people easier to get a medical solution to solve their

problems and absolutely cheaper than if people go to the hospital. This mobile

application is database-based and made with Flutter framework. This application will

divide into 2 users, the first user is people who need medical checks and the second

user is the doctor. The user page will have a single button, the button will log in include

registration using a google account, so the user did not register again, just using one

google account, when login the user can search doctor and find the category of the

doctor and directly doing health consultation. The doctor page will have the same

application as the user but in the database, the doctor’s role will be set by the user who

want to be a doctor, by uploading their certificate and choosing their role in the

application.

Keyword: technology, medical consultation, user, doctor

ii

DEDICATION

I as the author of this final project, I would dedicate this final project to the Jesus

Christ because of Him bless, so I can finish this final Project. I also would dedicate

my final project to my parents, my cute girlfriend, and all of my friends. I hope this

final project can be used for educational purpose in the academic field.

iii

ACKNOWLEDGEMENTS

I as the author of this final project would like to say all of my gratitude to the Jesus

Christ, because of Him bless and giving me healthiness. In this section, the author is

very grateful to everyone who has provided assistance, guidance, encouragement, and

support in making this final project. Therefore, the author would like to express my

gratitude to:

1. Mr. Rila Mandala, Ph.D., as my final project advisor who always guide me

and advise me when I working this final project, and give me a lot of

knowledge while I am studying at university.

2. Mr. Rila Mandala, Ph.D., as the Dean of Faculty of Computing, Mr. Nur

Hadisukmana, M.Sc., as the Program Head of Master of Science in Information

Technology, Mrs. Inda as Secretary of Faculty of Computing, and other

President University lecturers who provide facility to finish this final project.

3. My beloved parents (Mr. Parlindungan Simbolon and Ms. Tarida Siregar), my

brother (Haikal Simbolon), and my sister (Meisya Simbolon), for all support

and pray.

4. My beloved cute girlfriend, for all support and gofood.

5. My beloved sementara members (Rizky Asyam, Christopher Yusuf William

Hia, M. Raihan, William T, Fuad M, Salman, Sultan, Naufal, and Bernardo),

for all support

6. My beloved PROFEXENT, for all support and pray.

7. Lastly, all friends which I cannot mention one by one. I express my deepest

gratitude.

iv

TABLE OF CONTENTS

ABSTRACT ... i

DEDICATION.. ii

ACKNOWLEDGEMENTS ... iii

TABLE OF CONTENTS ... iv

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

CHAPTER I INTRODUCTION .. 1

1.1. Background ... 1

1.2. Problem Statement .. 2

1.3. Final Project Objectives .. 3

1.4. Scope and Limitation .. 3

1.5. Methodology ... 3

1.6. Final Project Outline ... 4

CHAPTER II LITERATURE STUDY .. 7

2.1. Theoretical Framework ... 7

2.1.1. Mobile Application .. 7

2.1.2. Flutter ... 8

2.1.3. Firebase .. 9

2.1.4. ERD (Entity Relationship Diagram) .. 11

v

2.1.5. UML (Unified Modelling Language) .. 11

2.1.6. Black Box Testing.. 12

2.1.7. Health Consultation ... 12

2.2. Related Work... 12

CHAPTER III SYSTEM ANALYSIS .. 16

3.1. System Overview .. 16

3.2. Functional Analysis ... 16

3.3. Development process analysis .. 17

3.3.1. Application Development .. 17

3.3.2. Database Setup ... 17

3.4. Hardware and Software Requirement ... 17

3.4.1. Hardware Requirements... 17

3.4.2. Software Requirements .. 18

3.5. Use Case Diagram ... 19

3.6. Use Case Diagram with Narrative Descriptive ... 20

3.7. Swim-Lane Diagram ... 26

CHAPTER IV SYSTEM DESIGN ... 31

4.1. User Interface Design .. 31

4.1.1. Introduction Page ... 31

4.1.2. Login Page ... 33

4.1.3. User Page ... 33

vi

4.1.4. Doctor Page .. 38

4.2. Database Design .. 42

CHAPTER V SYSTEM DEVELOPMENT .. 46

5.1. User Interface Development.. 46

5.2. Application Details .. 57

5.2.1. Screens ... 57

5.2.2. Controllers.. 61

5.2.3. Models.. 74

CHAPTER VI SYSTEM DEVELOPMENT ... 76

6.1. Testing Environment ... 76

6.1.1. Mobile Application .. 76

6.2. Testing Result .. 77

6.2.1. Black Box Testing Scenario... 77

CHAPTER VII CONCLUSION ... 80

7.1. Conclusion ... 80

7.2. Future Work and Suggestion ... 80

REFERENCES ... Error! Bookmark not defined.

vii

LIST OF TABLES

Table 2.1The differences between Stateless Widget and Stateful Widget 9

Table 2.2. Comparison with related work .. 14

Table 3.1. Function Description... 16

Table 3.2. Use Case Narrative for User Registration... 20

Table 3.3. Use Case Narrative for Doctor Registration ... 22

Table 3.4. Use Case Narrative for User Using Application ... 23

Table3.5. Use Case Narrative for Analysis the data ... 25

Table 6.1. Black Box Testing .. 77

viii

LIST OF FIGURES

Figure 2.1 Flutter Environment .. 8

Figure 2.2. Sistem Informasi Pelayanan Kesehatan Online Berbasis Web Pada PMI

Kabupaten Purbalingga .. 13

Figure 2.3. Halodoc user interface for mobile consultation ... 14

Figure 3.1. Application use case .. 19

Figure 3.2. User's registration swim lane diagram ... 27

Figure 3.3. Doctor's registration swim lane diagram ... 28

Figure 3.4. Swim lane diagram for user using application .. 29

Figure 3.5. Swim lane diagram for doctor analysing user data .. 30

Figure 4.1. Splash screen ... 31

Figure 4.2. Introduction page ... 32

Figure 4.3. Login Page Interface .. 33

Figure 4.4. User Home Page .. 34

Figure 4.5. Category Screen and Maps Screen at User Interface ... 35

Figure 4.6. Inside Category Screen in User Page Interface .. 36

Figure 4.7. User's Track Record in User Page Interface .. 36

Figure 4.8. User Consultation room with doctor in user Page Interface 37

Figure 4.9. User Profile in User Page Interface .. 37

Figure 4.10. User Change profile, Status, be doctor in User Page Interface........................... 38

Figure 4.11. Doctor Home Page in Doctor Page Interface .. 39

Figure 4.12. Doctor Consultation Room in Doctor Page Interface .. 39

Figure 4.13. Doctor Track Record to User in Doctor Page Interface 40

Figure 4.14. Doctor Profile Screen in Doctor Page Interface .. 41

Figure 4.15. Doctor Change Profile and Status Screen in Doctor Page Interface 41

Figure 4.16 Code to make users collection in database .. 42

Figure 4.17. Create connections to chats collection .. 42

Figure 4.18. Create chat collection in firebase ... 43

Figure 4.19. create chat collection in user collection in firebase ... 43

Figure 4.20. Create connection in trackRecord collection ... 44

Figure 4.21. Set trackrecord data to users’ collection .. 44

Figure 4.22. Create track collection in firebase ... 44

Figure 4.23. Database relationship for each collection .. 45

Figure 5.1. Splash screen ... 47

file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867892
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867897

ix

Figure 5.2. Introduction page ... 48

Figure 5.3. Login Page Interface .. 48

Figure 5.4. User Home Page .. 49

Figure 5.5. Category Screen at User Interface ... 50

Figure 5.6. Inside Category Screen in User Page Interface .. 50

Figure 5.7. User's Track Record in User Page Interface .. 51

Figure 5.8. User Consultation room with doctor in user Page Interface 52

Figure 5.9. User Profile in User Page Interface .. 52

Figure 5.10. User Change profile and Status in User Page Interface 53

Figure 5.11. User Change Role in User Page Interface ... 53

Figure 5.12. Doctor Home Page in Doctor Page Interface .. 54

Figure 5.13. Doctor Consultation Room in Doctor Page Interface .. 54

Figure 5.14. Doctor Track Record to User in Doctor Page Interface 55

Figure 5.15. Doctor Profile Screen in Doctor Page Interface .. 56

Figure 5.16. Doctor Change Profile and Status Screen in Doctor Page Interface 56

Figure 5.17. Introduction widget in introduction page .. 57

Figure 5.18 ListView widget ... 58

Figure 5.19. Column and row function .. 59

Figure 5.20. Dialog widget .. 59

Figure 5.21. To show doctor in the search screen .. 60

Figure 5.22. login function in controller .. 61

Figure 5.23. GetStorate to create local storage in device ... 62

Figure 5.24. Initialized the skipIntro function in controller ... 62

Figure 5.25. Calling Initialized function in the main page .. 62

Figure 5.26. autoLogin function in Controller ... 63

Figure 5.27. initialized autoLogin function in controller .. 64

Figure 5.28 logOut function in controller .. 64

Figure 5.29. getAllUsers function to get specific data in the database 65

Figure 5.30 Update User Function ... 65

Figure 5.30 changePrrofile function in controller .. 65

Figure 5.31 updatePhotoUrl function in controller ... 66

Figure 5.32 selectImage function in controllers ... 66

Figure 5.32 selectImage function in controllers .. 67

Figure 5.34. If already have connections in chat collection ... 68

file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867929
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867929
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867930
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867930
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867931
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867931
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867932
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867932
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867934
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867934
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867935
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867935
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867936
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867936
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867937
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867937
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867938
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867938
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867939
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867939
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867940
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867940
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867941
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867941
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867942
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867942
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867943
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867943
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867944
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867945
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867946
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867947

x

Figure 5.35. Make new connection in Chat collections ... 69

Figure 5.36 UpdateStatus read or unRead in controller ... 69

Figure 5.37. newChat function in controllers .. 70

Figure 5.38. Check tarckRecord in trackRecord Collection .. 71

Figure 5.39. if already have connection of trackRecord in trackRecord Collection 72

Figure 5.40 Build trackRecord in the database .. 73

Figure 5.40. Make new connection in trackRecord Collection .. 73

Figure 5.41. Users Models ... 74

Figure 5.42. Chat Models... 75

file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867948
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867948
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867949
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867949
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867950
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867950
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867951
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867951
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867952
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867952
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867953
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867953
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867954
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867954
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867955
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867955
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867956
file:///C:/Users/yosua/Documents/Yosua%20Simbolon/Bahan%20Belajar/SKRIPSI/Thesis/FINAL%20PROJECT%20-%20FINAL/FINAL%20PROJECT%20-%20Yosua%20N%20S%20-001201800140.docx%23_Toc98867956

1

CHAPTER I

INTRODUCTION

1.1. Background

Health is one word but important, health is the most important part of every living thing in

this world especially for humans. Humans can only do something if they are in good health and

then health can be an indicator of humans can work efficiently or not. [1] Health is the main

actor in this world because if health is disturbed so another part such as political, economic, or

trade market will be disturbed too.

The health need is increasing day by day, many ways to keep humans healthy such as eating

good food, having a good habit, or eating vitamins. And also, humans will pay more if they

can keep their healthiness because of that reason many companies take this opportunity to make

their business about health.

The most common if a person to take care of his health is that they have to know about his

body and how one can find out about it, they have to consult and pay a doctor for a health check

so that they will know about their body, they can improve their health and can more productive

than anyone who doesn't check their body. The method is widely used by health companies to

profit from people who are willing to pay more for health. This method causes many inequality

problems in social equality because the only people who can get this method are people who

have money, for those who can't pay the health consultation fees they can't get this method.

Technology is a wonderful thing because technology can make something impossible to

possible. Technology is a tool that can help people from many aspects, for example in the health

sector because we can make something using technology and connect many people to discuss

about healthiness and talk about the health trend. With technology, we can help people to make

2

an easy way to check their healthiness so everyone can increase their health and can more

productive. Not only improve health but check-up our health can prevent us to more serious

diseases.

 This final project will be one of the factors that can make everyone able to carry out

health consultations. The factor mentioned is making an application to conduct online

consultations with doctors in general. By utilizing this application, people will easily get health

consultations without having to be charged. By doing this online consultation using the

application we use, we can improve our health, we can also prevent or find out our disease

before it becomes more severe and difficult to treat.

Based on the background above, the authors try to overcome the above problems by

creating applications that are suitable for their use and can be used by everyone, by making the

application display simple and lightweight so that all generations can use the application easily

and can be of benefit to the community. everyone. Therefore, this final project was submitted

under the name "Implementation of Public Health Consultation Using Flutter

Framework"

1.2. Problem Statement

Based on the issues and problems described in the background section, the researcher

identifies research problems as follows:

• Analysing the benefits of using the Health Consultation method to doctors for

people who can carry out the method compared to those who cannot carry out the

method.

• The lack of an application that allows everyone to carry out free health consultations

so that everyone without exception can feel and know their health condition.

3

1.3. Final Project Objectives

This study aims to solve the problem by creating an application that has benefits in the

health sector such as online health consultation using a mobile application. Creating a mobile

application can provide a more practical effect and still have an effective quality to solve this

problem.

1.4. Scope and Limitation

This research focuses on developing a mobile application that can show online health

consultations. So, the research will cover up as follows:

1. The user will receive data from the doctor after carrying out an online consultation

using the mobile application.

2. The data will be inputted using the chat system directly to the doctor.

3. The data will be analysing by the doctor manually.

However, the limitations of this research are:

1. Data processing is a little time consuming because the data will be processed manually

directly from the doctor.

2. The data provided to the user will be following the analysis of the doctor who handles

that user.

1.5. Methodology

This application uses the Rapid Application Development methodology (RAD). RAD

is one of the software development tools introduced by James Martin in 1991. This

4

methodology is designed to reduce the emphasis and design and put more emphasis on the

adaptive process.

In RAD there are four sections in the process of development:

1. Requirement Planning Section

This section begins with planning what will be done and also planning what equipment

will be used. This section also prepares project scope, system requirements, and

constraints

2. User Design Section

After finishing planning this project, it's time to start designing applications that will be

made such as user interface, input, output design, and database design.

3. Development Section

In this section where all designs and plans are developed, the development process is

carried out according to what has been planned and planned

4. Cut Over Section

In this last section, the finished application will carry out some testing to find out if

there are bugs or errors and will also fix the existing errors.

1.6. Final Project Outline

This research contains seven chapters as listed below:

1. CHAPTER I: INTRODUCTION

This chapter contains background, problem statement, research objectives, scope and

limitation, research methodology, and research outline.

5

2. CHAPTER II : LITERATURE STUDY

Literature study explain about the theories and concept related this final project

application. This chapter consists description of what is mobile application, flutter,

Firebase, ERD, UML, Black Box Testing, Health Consultation, Review of Relevant

Studies.

3. CHAPTER III: SYSTEM ANALYSIS

This chapter contains the description all of the requirements, analysis and function of

the health consultation application using use case diagram and swim lane diagram.

4. CHAPTER IV: SYSTEM DESIGN

This chapter explains how the health consultation is implemented on mobile

application. This chapter consist of the user interface development and the mobile

application details.

5. CHAPTER V : SYSTEM IMPLEMENTATION

In this chapter will explain about the application page and layout, the application

component, and application architecture. In this section will contain about User

Interface and Database Design.

6. CHAPTER VI: SYSTEM TESTING

This chapter will explain about the testing of the application’s system and function to

running the application and doing the service as mobile application health application.

This chapter include Testing Environment, Testing Scenario, and Limitation Testing.

6

7. CHAPTER VII: CONCLUSION AND FUTURE WORK

In this final chapter contains conclusion about this final project. The future work of this

chapter describes about the next step to improve for the health consultation application

in the future.

7

CHAPTER II

LITERATURE STUDY

 The final project’s related concept and theories that are used in the development of

Health Consultation Mobile Application.

2.1. Theoretical Framework

2.1.1. Mobile Application

[2] A mobile application is a technology that consists of software that can perform many

commands for users. Mobile application is a technology that is developing very quickly in

line with the number of enthusiasts and also users of mobile applications. The factors that

make mobile applications very attractive are practical, user-friendly, inexpensive, an

application can be used on all mobile phones that support the technology. Mobile apps have

many very useful uses such as calling, sending messages, surfing the internet,

communicating, social media, audio, video, games, etc.

Most of the mobile applications are pre-installed before the mobile is used and some

users can download the application from the internet or the mobile market application. The

application market is also a place for developers, publishers, and also mobile application

providers to gather and deliver their innovations. From a technical point of view, mobile

applications can be run on various leading platforms such as iPhone and Android.

The usefulness of a mobile application is that it can connect one person to another in a

very practical, inexpensive, and also easy way so that many ideas for developers can be

much more utilized for everyday life, not just communication but can also influence factors.

other.

8

2.1.2. Flutter

Flutter is a cross-platform framework that aims to develop high-performance mobile

devices, why is it considered cross-platform because applications derived from the flutter

framework can be used on Android as well as IOS. Flutter was released by Google

Corporation in 2016, besides being able to be used on Android as well as IOS flutter can

rely on OEM device widgets, Flutter renders every component of the high-performance

rendering engine itself. With these properties, it is very supportive if flutter can produce

applications that have high performance. Flutter also uses a C/C++ engine code structure

compiled with NDK from Android as well as LLVM from IOS, and code from Dart

Language is AOT compiled to native code during compilation and render the code.

Figure 2.1 Flutter Environment

Widgets are a very important element in the Flutter Framework. Widgets have to be

attractive and also make sense because users see and feel them first hand. Widgets not only

9

control and affect the appearance of the app, but also respond to user actions. Therefore,

the widget must be able to work quickly including in rendering and animation. Flutter

moves widgets and renderers into a single system, which allows widgets to be more

customizable for apps as well as extendable within apps. Widgets in Flutter are divided into

2 major, namely Stateless widgets and Stateful widgets. The table below will show the

differences between the two widgets:

Table 2.1The differences between Stateless Widget and Stateful Widget

2.1.3. Firebase

[4] Firebase is a web platform application. Firebase helps developers build high-quality

apps. It stores data using the JavaScript Object Notation (JSON) format and Firebase does

not use queries to insert, update, delete, or add data to it. Firebase is a back-end system that

serves to provide data in the database. Firebase has several features such as:

1. Firebase analytics

To analyse how users use the application, such as user habits when inside the

application.

2. Firebase Cloud Messaging (FCM)

Paid service on firebase which is a cross-platform solution for messages and

notifications on Android, iOS, and web applications.

3. Firebase Auth

 Dynamic

Composition

Itself immutable Sub State Object

mutable

Stateless Widget False True False

Stateful Widget True True True

10

It is a service that can authenticate users using only client-side code and is a paid

service. It also includes a user management system where developers can enable

user authentication with email and password logins stored with Firebase.

4. Real-time Database

This feature will provide an API for app developers so data can be synced across

clients and the Firebase cloud. Client libraries will be provided by companies that

have integrity with Android, iOS, and JavaScript applications.

5. Firebase Storage

This feature facilitates easy and secure document transfer. Firebase Storage is

powered by Google Cloud Storage which is a cost-effective object storage service

from google. So, developers can store a lot of media such as photos, videos, audio,

etc.

6. Firebase Test Lab for Android

This feature provides cloud-based facilities for testing applications, especially

Android. With this feature, developers can test their applications on various devices

and configurations. The results of these tests are available in the Firebase Console.

7. Firebase Crash Reporting

This feature is provided by firebase to be reported if there is an error from the

application and can be sorted according to the level of complexity of the problem.

8. Firebase Notification

This feature is useful for providing notifications to application developers and this

service is freely available.

11

2.1.4. ERD (Entity Relationship Diagram)

Entity Relation Diagram (ERD) is a description of the data modelled in the form of a

diagram that is used for data documentation by determining what is contained in each entity

and how the relationship between one entity and another (Rahmayu, 2016:34)

2.1.5. UML (Unified Modelling Language)

[6] The Unified Modelling Language (UML) is a family of graphical notations

supported by a single meta-model, which helps the description and design of software,

especially programs that use the Object-Oriented Programming (OOP) system. The

diagrams in UML include:

a) Use case diagram

This diagram is used to describe the interaction between the user and the system

itself, by telling which various systems are used.

b) Activity diagram / Swim-Lane Diagram

This diagram is used to explain procedural logic, business processes, and work

processes.

c) Class diagram

This diagram illustrates the types of objects in the system and the different types

of statistical relationships that exist between these objects.

d) Sequence diagram

This diagram describes how an object can interact with other objects in the

system. Usually used to show scenarios or steps taken in response to an event to

produce a certain output.

e) Component diagram

12

This diagram is used to describe the organization of the system and the

dependencies of the application components in the system and is used to show

how the program code is divided into modules or components.

f) Deployment diagram

This diagram is used to describe the architecture in nodes for system software as

well as other tools in building the architecture on a run-time basis.

2.1.6. Black Box Testing

[7] Black Box Testing is a system test that is carried out by running the unit according

to a predetermined process. Meanwhile, according to Pressman in Taufik and Ermawati

(2018: 3), "Black Box Testing" is a test that allows a developer to get input conditions that

fully use all the requirements of a functional program.

2.1.7. Health Consultation

[8] Health Consultation is a way to maintain health, improve health, or prevent the

occurrence of a disease that is carried out individually or in groups. Health consultation

usually will be done by the individual, family, group, or community.

2.2. Related Work

Several people or organizations in the field of Information Technology have made

similar applications that have benefits in the field of Health. According to Khasanah and

Wijianto (2018) in their journal entitled "Sistem Informasi Pelayanan Kesehatan Online

Berbasis Web Pada PMI Kabupaten Purbalingga", the need for technology is currently very

much needed, especially in the health sector because it can speed up registration and data

entry so that people can easily get access. health.

13

Figure 2.2. Sistem Informasi Pelayanan Kesehatan Online Berbasis Web Pada PMI

Kabupaten Purbalingga

And medical consultation mobile application already made by company called

Halodoc, the function of this application is to doing online consultation using mobile

application.

14

Figure 2.3. Halodoc user interface for mobile consultation

Table 2.2. Comparison with related work

No. Program Feature

Pelayanan

Kesehatan Web

Pada PMI

Kabupaten

Purbalingga

Halodoc

This

Application

1. Sign in and Sign up Yes Yes Yes

2. Category doctor No Yes Yes

3. Track Record No No Yes

4. Update Profile Yes Yes Yes

5. Free Yes No Yes

6. Sign in method

Email and

Password

Phone Number

Google

Account

7. Sing Out Yes Yes Yes

15

Based on the two studies above, the authors conclude that the application of health

consultations is needed to improve public health. With this application, it can also reduce long

queues at the hospital, so that everyone can get health services at the right time and practice.

and the advantage of this application is that it has a track record feature so users can see their

progress at every doctor they visit.

16

CHAPTER III

SYSTEM ANALYSIS

In this chapter will explain about the technology function, how its work and how it

develops. For this chapter, there will be some list of requirements used to complete the

program, thus this chapter will consist of: System Overview, functional Analysis,

development process analysis, hardware and software requirement, use case diagram, and

many diagram that show the technology flows.

3.1. System Overview

The System will implement the Front-end service which is the screen of the application

and then the Back-end service allowed user input the data thru the application to the

database. There is no special algorithm used in this application because this application uses

manual analysis carried out by doctor.

3.2. Functional Analysis

The functional analysis requirements are the basic for achieving the main goal of

Implementation of Public Health Consultation Using Flutter Framework. The Functional

Analysis requirements are the main goal to achieve the complete function of the application.

The requirements for this final project are listed in Table 3.1.

Table 3.1. Function Description3

No. Function Description

1. Allow user and doctor login to the application

2. Allow user get the doctor and doing health consultation

17

3. Allow doctor get the user’s health consultation data and store the analysis data to

the user

3.3. Development process analysis

The development process analysis is the development process for monitoring system for

Implementation of Public Health Consultation Using Flutter Framework is divided into

some processes.

3.3.1. Application Development

In this process, the application is built. The application will use to user application include

the doctor. Client side will handle the user interface and user experience while the server

side handle the data flow to the database server.

3.3.2. Database Setup

In database setup, the developer will setup the database so database can connect to the

application, so the application can add, delete, and update the data from database.

3.4. Hardware and Software Requirement

In this final project the application will be create using the following parts:

3.4.1. Hardware Requirements

To develop the mobile application there are several hardware needed to support the

developer make the program. The hardware needed listed below:

a. Laptop

Laptop will the place where the application will be made, using Android Studio and

using Framework Flutter.

18

b. Type C Cable

The type C cable will use to connect the mobile phone to laptop so the program will

debug and run directly to the phone.

c. Mobile Phone (Android)

The developer uses android as the place for program running and debugging. Using

mobile phone to check the application if there any bugs or some error.

3.4.2. Software Requirements

To build the application in this final project, there are several software needed to

finish this project, the software used in this project is listed below:

a. Android Studio

The android studio is the IDE will be used to develop the program. The Android

Studio already installed the Framework flutter and ready to use.

b. Microsoft Office

Microsoft Office is used to write the Final Project Documentation for whole

process of develop the program.

c. Google Chrome

Google Chrome is the web browser to open the firebase application and

configuration the database.

19

3.5. Use Case Diagram

This diagram will be used to explain how the system works and the flow between the

user and the system is provided in the diagram. Use case diagram is also explaining the

system modelling and the process when it is used. The Use case diagram for Implementation

of Public Health Consultation Using Flutter Framework is shown in fig. 3.1.

Figure 3.1. Application use case4

20

3.6. Use Case Diagram with Narrative Descriptive

Use case diagram with narrative descriptive is the Use Case Diagram with the textual

description. The narrative description is used to explain the mini process from the whole

system of this final project application. The description will describe the process based on

the functionality. The interaction description consists of several parts which are the case

description, process name, precondition, business rule, trigger, conclusion, and post-

condition. The use case diagram with narrative descriptive has a goal to explain the process

and identify the idea more clearly before the developer starts developing the application.

Table 3.2. Use Case Narrative for User Registration4

Use Case Name User Registration

Use Case Id UC01

Priority High

Primary Business Actor User

Primary System Actor Mobile Phone

Other Participating

Actor

None

Description Use case explains the user registration to the application

Trigger Data successfully sent to the database

Typical Course of Event Action User System Response

21

Step 1: User press button

login, and choose the

google account

Step 2: System authentication the

user

 Step 3: User automatically set up to

database using google account data,

and setup as user

Step 4: User can use

application and find the

doctor.

Alternate Course None

Post Condition The data has already been sent to the database by google and

automatically set up to database

Implementation

Constraint and

Specifications

None

22

Table 3.3. Use Case Narrative for Doctor Registration5

Use Case

Name

Doctor Registration

Use Case Id UC02

Priority High

Primary

Business Actor

Doctor

Primary

System Actor

Mobile Phone

Other

Participating

Actor

None

Description Use case explains the doctor registration to the application.

Trigger Data successfully sent to the database.

Typical Course

of Event

Action Doctor System Response

Step 1: Doctor press button

login, and choose the google

account

Step 2: System authentication the doctor

23

 Step 3: User upload their certificate in the

application and choose their role in the

application.

Step 4: Doctor can use

application and find the

doctor.

Alternate

Course

None

Post Condition The data has already sent to the database and already set up automatically

from google account’s data

Implementation

Constraint and

Specifications

None

Table 3.4. Use Case Narrative for User Using Application6

Use Case

Name

User using application

Use Case Id UC03

Priority High

24

Primary

Business Actor

User

Primary

System Actor

Mobile Phone

Other

Participating

Actor

None

Description Use case explains the user login to the application and use the

consultation service.

Trigger Data successfully sent to doctor.

Typical Course

of Event

Action Doctor System Response

Step 1: User login to the

application.

Step 2: System authentication the doctor

Step 3: User search doctor in

the category page and choose

doctor.

Step 4: User start chat to the

doctor

25

 Step 5: System send the data to the

doctor.

Alternate

Course

None

Post Condition The data has already been sent to the doctor and will be analysed by a

doctor

Implementation

Constraint and

Specifications

None

Table3.5. Use Case Narrative for Analysis the data 7

Use Case Name Doctor Analysis the data user in the application

Use Case Id UC04

Priority High

Primary Business Actor Doctor

Primary System Actor Mobile Phone

Other Participating Actor None

26

Description Use case explains the doctor analysis the data and send it to

the application

Trigger Doctor get the data from application

Typical Course of Event Action Doctor System Response

Step 1: Doctor login to the

application

Step 2: System

authentication the doctor

Step 3: Doctor analysing the

user’s health consultation data

 Step 4: System send the

result to the user.

Alternate Course None

Post Condition The data has already been analysed by the doctor, and the

data has been sent to the user.

Implementation Constraint

and Specifications

None

3.7. Swim-Lane Diagram

A Swim-Lane diagram is a diagram used to visualize the component-based part of the

process. This diagram visualizes the process in a view of lanes. The Swim-Lane diagram

27

defines the input-output, main process, and subprocess of the application when the

application is running. Swim-Lane diagram has two lanes that will be shown which are the

User Lane, the Swim-Lane that will be used to define what users do, and the System Lane,

the Swim-Lane Diagram that will be used to define what the System should do.

Figure 3.2. User's registration swim lane diagram5

28

Figure 3.3. Doctor's registration swim lane diagram6

29

Figure 3.4. Swim lane diagram for user using application7

30

Figure 3.5. Swim lane diagram for doctor analysing user data8

31

CHAPTER IV

SYSTEM DESIGN

4.1. User Interface Design

The user interface (UI) for this mobile application is flexible, so the user can use any

mobile operating system such as Android and iOS. For this application, there are 4 User

interfaces which are Introduction Page, Login Page, User Page, and Doctor Page.

4.1.1. Introduction Page

In this page there are several screens start from splash screen as opening the

application using animation after that going to introduction screen, the screen contains

several messages from developer to users.

Figure 4.1. Splash screen9

32

Figure 4.2. Introduction page10

In Figure 4.1 and Figure 4.2 display the first page when the user start the application in the

splash screen will automatically show when the application start, and the introduction page will

show when the application first time installed in the user phone, after that the introduction will

never show again.

33

4.1.2. Login Page

This page just has one button as login and register to the application, for the user

and doctor, the function of the login button is getting the user’s Google account as the

user’s data and then putting the data to the database. Then the database will verify the

data from a google account and verify the user using that data.

4.1.3. User Page

The user page is the page just user, this page can be only accessed by the user,

in this page the user gets some features which are, find a doctor in category screen, see

the user’s track record data. User can choose their doctor by the user themselves. In

category screen there are 4 category which is “Dokter Umum”,”Dokter

Kandungan”,”Dokter Kecantikan”,and ”Dokter kelamin”. The user also can edit their

profile in the user page.

Figure 4.3. Login Page Interface11

34

Figure 4.4. User Home Page12

In the user’s home page will show the last chat with doctors, and then in the corner of the

home page will be a floating button, to navigate to maps and to category page.

35

Figure 4.5. Category Screen and Maps Screen at User Interface13

In figure 4.5, there is 2 screen the category screen will show the lists of categories of the doctor, when

user push the category will show the lists of doctors with the same category. The maps screen will

show the map and the location of the user, when user push the button below the maps will show the

nearest category to the user.

36

Figure 4.6. Inside Category Screen in User Page Interface14

Doctor will be classification for each category in this screen, so the user can find the doctor easily.

Figure 4.7. User's Track Record in User Page Interface15

In this page will use after the user and doctor finish the consultation, and then the doctor will make

the track record, so the user can read it.

37

This page will use by user and the doctor, this page called consultation room, so the user will

consultation with doctor in this page.

Figure 4.9. User Profile in User Page Interface17

Figure 4.8. User Consultation room with doctor in user Page Interface16

38

Figure 4.10. User Change profile, Status, be doctor in User Page Interface18

In figure 4.9 and figure 4.10 is the user page in the page will be the palace user can maintain their

user information.

4.1.4. Doctor Page

The doctor page is simpler than the user page just has 2 screens which are the

Home Page for the doctor include the consultation room and only the doctor can write

the track record.

39

Figure 4.11. Doctor Home Page in Doctor Page Interface19

In this page will show the user want to chat to the doctor.

Figure 4.12. Doctor Consultation Room in Doctor Page Interface20

40

Figure 4.13. Doctor Track Record to User in Doctor Page Interface21

In figure 4.12 and figure 4.13 there is consultation page and track record page, consultation

page using by doctor to take the user consultation after the user consultation finish the doctor

will give the user track record in the track record page

41

Figure 4.14. Doctor Profile Screen in Doctor Page Interface22

Figure 4.15. Doctor Change Profile and Status Screen in Doctor Page Interface23

In figure 4.14 and figure 4.15 is the user page in the page will be the palace user can maintain

their user information.

42

4.2. Database Design

In this application, the author uses the firebase database, which is different from SQL

and Postgres. To create a table in the flutter, the database was created directly from the

program.

Figure 4.16 Code to make users collection in database 24

Figure 4.16 shows the code to create user collection. User collection has 10 attributes: uid as

Primary Key (PK), name, keyName, email, photoUrl, status, role, creationTime,

lastSignInTime and updateTime.

Figure 4.17. Create connections to chats collection25

43

Figure 4.18. Create chat collection in firebase26

Figure 4.19. create chat collection in user collection in firebase27

Above there are two images that have a relationship, the first in Figure 4.17. serves to make a

connection between the sender of the message and the recipient of the message. this collection

also serves to create a chat_id which will be useful in the next image. In figure 4.17 contain

connections collection. In figure 4.18. code serves to create chat collections that are useful for

storing chat data made by senders and users, in this collection contains pengirim, penerima,

msg, isRead, and groupTime. In figure 4.19 create chat collection in user collection, so in user

collection there is chat data consist of connection, lastTime, and total_unread.

44

Figure 4.20. Create connection in trackRecord collection28

Figure 4.21. Set trackrecord data to users’ collection29

Figure 4.22. Create track collection in firebase30

In three figures above, figure 4.20 is to create connection field in trackrecord collection,

to connect the user to the doctor, so the doctor able to write the track record, trackrecord

45

collection just have one field is just connection. In figure 4.21 is to input trackrecord connection

to the user’s data, in this collection consist of connection and lastTime. In figure 4.22 is to

create a track collection the function of this collection to place a track record message be

placed, so the data can easily put on UI.

Figure 4.23. Database relationship for each collection31

The figure above explains about collection relationship for each collection in the

firebase database. User collection connect to Chats and track record collection, these

collections have their id, and the for Chats collection have branched to contain Chat collection

to be a chat data repository so that it is more structured, and same with a track record have a

branch to contain track record collection to be a track record data repository.

46

CHAPTER V

SYSTEM DEVELOPMENT

In this chapter will explain about the implementation of the system to the application,

The implementation of the chat from user to doctor will explain in this chapter. The application

will develop using Flutter ver. 2.5.3, Dart 2.14.4, and Android Studio ver. 2020.3. In this

chapter the system User Interface Development and Application Details are discussed.

5.1. User Interface Development

This application has many pages, but the pages can group into 4 main pages, there are

Introduction Page, Login Page, User Page, and Doctor Page.

On the introduction page, the application will show the splash screen as the beginning

screen when the user opens the application, after the splash screen there are two possibilities

if the user never uses the application the introduction page will disappear and directly go to

the login page, but if the user uses the application for the first time there will be introduction

screen consist four pages intro to the application but if the user wants to skip it, it’s can

skipped because there is a button for skip the introduction. The introduction contains a

message from the developer to the user.

In this application, there is no registration page because this application uses a google

account as the account for the user, so in the Login page there is just have one button and

the button will connect to the google account, so the user can choose the google account

they want to use. If the user chooses the google account so the google account will send user

data such as name, email, photo picture, etc so after pushing the button user can directly use

the application without any verification.

47

In this application will divided by 2 users they are user and doctor, so the main page will

divide by 2 too, first is user page, in user page user can find and choose their doctor in the

category page. users can choose the doctor they want according to their needs, in the user

page, there are 4 categories namely “dokter umum”, “dokter kecantikan”, “dokter

kandungan”, and also “dokter kelamin”. At the time of selecting the user can also search

for the doctor they want, if there is any doctor user want the system will display it. The

consultation room make like chat app so the user can use the application easily. User can

see their track record in the chat room and then the user can custom their name, status, and

their profile picture.

On the doctor page the doctor just can wait for the user to contact them, after contact

and doing consultation doctor can write the user's track record in the chat room so the user

can see their track record. In doctor, page doctor can change their name, status, and their

profile picture but cannot change the rule, because the rule can change only by developer.

Figure 5.1. Splash screen32

48

Figure 5.2. Introduction page33

In figure 5.1 and figure 5.2 will show the splash screen and introduction scree, this page will

be the first page will show when the user starts the application. Splash screen show when the

user starts the application after that the splash screen will continue with introduction page.

Figure 5.3. Login Page Interface34

49

Figure 5.3 is the login page, in this application using login system by google, so the user will

login automatically using google Gmail.

Figure 5.4. User Home Page35

In the figure 5.4 user home page will show the history chat with the doctor, in this page

the user can press the floating button and search doctor in the category page, not even search

doctor the user can open the map page and find the nearest doctor from the user location.

50

Figure 5.5. Category Screen at User Interface36

Figure 5.6. Inside Category Screen in User Page Interface37

In the figure 5.5 and figure 5.6 there is the category page and maps page, the category page

will show the doctor base the category and make the list. In the maps page will show the map

and the user location, so the user can find the nearest place and doctor near user based on user

location.

51

Figure 5.7. User's Track Record in User Page Interface38

After finish the consultation the user can see the trac record given by the doctor, in this page

the user just can see the track record, cannot edit or delete it.

52

Figure 5.8. User Consultation room with doctor in user Page Interface39

In this page the user doing consultation with the doctor, user can give their data to the

doctor, so the doctor can analyse the disease.

Figure 5.9. User Profile in User Page Interface40

53

In figure 5.9 the user can maintain their data like change their status, manage their

profile picture and their name, and also for user who want to be doctor can register in the be

doctor page.

Figure 5.10. User Change profile and Status in User Page Interface41

Figure 5.11. User Change Role in User Page Interface42

In figure 5.10 and figure 5.11 explain about the user maintain the user data, user can

change the photo profile, status, and also name, but user cannot change their email, and in this

page the user can also register to be doctor, the user can upload their certificate and choose

their role and this change will be automatically change the user role at database.

54

Figure 5.12. Doctor Home Page in Doctor Page Interface43

In this page will show the doctor chat with the user. Doctor cannot search the user and

also make the connection to the user, except the user itself. The doctor just waits the user chat

them and then start the consultation.

Figure 5.13. Doctor Consultation Room in Doctor Page Interface44

55

Figure 5.14. Doctor Track Record to User in Doctor Page Interface45

The doctor doing consultation in the chat room with the user, so the doctor can diagnose

the disease of the user when user chat doctor, after finish the consultation the doctor will give

the user track record, in this situation doctor can give the track record to the user.

56

Figure 5.15. Doctor Profile Screen in Doctor Page Interface46

Figure 5.16. Doctor Change Profile and Status Screen in Doctor Page Interface47

In this page the doctor can maintain their data such as change name, status and also their

profile picture.

57

5.2. Application Details

This part explains about codes that are used to build in this mobile application. In this

section will explain just the important code. This Mobile Application made using Flutter

Frame work and using dart language. This application using GetX as State Management.

When made this application divided into 3 parts: the screen, the models, and the

controllers.

5.2.1. Screens

When user open this application, the first thing user can get is the splash screen,

splash screen build as the opening in this application. The splash screen called in the

main activity by FutureBuilder() function, so when application running the splash

screen will build and run as the first screen. In this application made by many widgets

after the splash screen will continue with introduction screen, the introduction screen

made by widget called IntroductionScreen()this widget generates the function index to

be several screens and the style can be customized from the developer.

return Scaffold(

 body: IntroductionScreen(

 pages: [

 PageViewModel(

 ……),

 PageViewModel(

 ….),

 PageViewModel(

 ….),

 PageViewModel(

),

],

 onDone: () => function()

 showSkipButton: true,

 skip: Text(…)

 next: Text(…..),

 done: const Text(….)

);

Figure 5.17. Introduction widget in introduction page48

58

 if the page already finishes and the user want to move to another screen because this

application using GetX state management so the navigator function called:

Get.offAllNamed(Routes….) after that going to the next page. The most important

widget in this application is ListView.builder() because this widget can change data in

firebase to a list. ListView.builder() can get data if this widget wrap using

StreamBuilder() go get the data.

 In this application screen using assets lottie, lottie is an image animation formatted

by JSON, the Lottie usual put in the splash screen, introduction screen, and login screen.

The Lottie called using Lottie.asset() function. The formation of this application using

Column()and Row()to arrange widgets according too the design.

StreamBuilder<QuerySnapshot<Map<String, dynamic>>>(

 stream: controller

 return ListView.builder(

 controller: controller

 itemCount: data.length,

 itemBuilder: (context, index) {

 ItemChat(the style of the list),

Figure 5.18 ListView widget49

59

To show give notification if some function doing well or there are some errors

the application will pop up the dialog widget, the dialog function contains about error

message or just a message to be indicator if the application doing well or not.

In this application user also can search the doctor too, there is have search bar connected

to the database, so when the user wants to search the doctor, the search bar will show it

up. To show the search bar the program using ListView.builder() to show the doctor.

Column(

 children: [

 Container(

 child: Row(

 Children:[

]

)

),

),)

],

),

Get.defaultDialog(title: "……………", middleText: "………");

Figure 5.19. Column and row function50

Figure 5.20. Dialog widget51

60

Figure 5.21. To show doctor in the search screen52

ListView.builder(

 padding: EdgeInsets.zero,

 itemCount: controller.tempSearch.length,

 itemBuilder: (context, index) => Card(

 elevation: 8,

 shadowColor: Colors.blueAccent,

 shape: RoundedRectangleBorder(

 borderRadius: BorderRadius.circular(24)),

 child: InkWell(

 onTap: () {

 authC.addNewConnection(

 controller.tempSearch[index]["email"],

);

 },

 child: Container(

 decoration: BoxDecoration(

 borderRadius: BorderRadius.circular(20),

 color: Colors.blueAccent.withOpacity(0.2),

),

 height: 150,

 width: double.infinity,

 child: Stack(

 children: [

 style….

 child: Image.network(

 controller.tempSearch[index]["photoUrl"],

 height: 100,width: 100,

),

)),

 child: Column(

 children: [

 Text(

 controller.tempSearch[index]["name"],

 style: TextStyle(

 color: Colors.white, fontSize: 25),

),

 SizedBox(height: 10,),

 Text(

 controller.tempSearch[index]["email"],

 style: TextStyle(

 color: Colors.white, fontSize: 15),

),

],

),

))

],

),

),

)),

)

61

5.2.2. Controllers

The application cannot show the data and send the data without the controllers

because controllers have a function to manage the flow of the application, because this

application using GetX state management the controllers file build automatically when

developer create the file page using command “get create page: #thepagename” in the

terminal. When user login to the application controllers will get data from google

account and store the data to the data base.

Future<void> login() async {

 try {

 await _googleSignIn.signOut();

 await _googleSignIn.signIn().then((value) => _currentUser =

value);

final isSignIn = await _googleSignIn.isSignedIn();

 if (isSignIn) {

 print("LOGIN SUCCESS GO TO THE NEXT PAGE: ");

 print(_currentUser);

 final googleAuth = await _currentUser!.authentication;

 final credential = GoogleAuthProvider.credential(

 idToken: googleAuth.idToken,

 accessToken: googleAuth.accessToken,

);

 await FirebaseAuth.instance

 .signInWithCredential(credential)

 .then((value) => userCredential = value);

 print("USER CREDENTIAL");

 print(userCredential);

 CollectionReference users = firestore.collection('users');

 final checkuser = await

users.doc(_currentUser!.email).get();

 if (checkuser.data() == null) {

 await users.doc(_currentUser!.email).set({

 set the user in database

 } else {

 Set username log history in database

 }

 user.refresh();

 isAuth.value = true;

 Get.offAllNamed(Routes.HOME);

 } else {

 print("TIDAK BERHASIL LOGIN");

 }

 } catch (error) {

 print(error);

 }

}

Figure 5.22. login function in controller53

62

Everything in the backend will handle in the controllers, when user already login

in the application the introduction will skipped so from splash screen will directly go

to the login page because when login the login:

From picture 5.23. when user login for the first time the application will make

a local storage and will write data “skipIntro”, so when the application running if there

is a data called “skipIntro” the introduction page will skip and go directly to the home

page if the user already login or goes to the login page if the user already logout. This

local storage get control in controller and called in the main screen.

final box = GetStorage();

//box.write('skipIntro', true);

if (box.read('skipIntro') != null) {

 box.remove('skipIntro');

}

box.write('skipIntro', true);

Future<void> firstInitialized() async {

await skipIntro().then((value) {

 if (value) {

 isSkipIntro.value = true;

 }

 });

}

return FutureBuilder(

 future: authC.firstInitialized(),

 builder: (context, snapshot) => SplashScreen(),

Figure 5.23. GetStorate to create local storage in device54

Figure 5.24. Initialized the skipIntro function in controller55

Figure 5.25. Calling Initialized function in the main page56

63

In figure 5.25. the controller function called in the main page so when running

the application, the initialized function will check the local storage first.

In this application when user already login and close the application, and then open the

application the application will still login as the user login before because in the

controller already make auto login function, the function system is like skip intro but

the auto login did not use local storage as the indicator, the auto login using google auth

token to be indicator in this application.

Future<bool> autoLogin() async {

 try {

 final isSignIn = await _googleSignIn.isSignedIn();

 if (isSignIn) {

 await _googleSignIn

 .signInSilently()

 .then((value) => _currentUser = value);

 final googleAuth = await _currentUser!.authentication;

 final credential = GoogleAuthProvider.credential(

 idToken: googleAuth.idToken,

 accessToken: googleAuth.accessToken,

);

 await FirebaseAuth.instance

 .signInWithCredential(credential)

 .then((value) => userCredential = value);

 print("USER CREDENTIAL");

 print(userCredential);

 CollectionReference users = firestore.collection('users');

 await users.doc(_currentUser!.email).update({

 "lastSignInTime":

userCredential!.user!.metadata.lastSignInTime!.toIso8601String(),

 });

 final currUser = await

users.doc(_currentUser!.email).get();

 final currUserData = currUser.data() as Map<String,

dynamic>;

 user(UsersModel.fromJson(currUserData));

 user.refresh();

 return true;

 }

 return false;

 } catch (err) {

 return false;

 }

}

Figure 5.26. autoLogin function in Controller57

64

In figure 5.26. the autologin function will check if there any google account still

sign in in this application. Type of this function is Boolean so if in this application there

are already signed in the function will have value true, if not the function will have

value false. Value will process in the Initialized function like skipIntro function and

then the function will call in the main page.

After initialized the autologin function the initialized function will call in the main page.

User can login this application, the controller will take the function, it’s called logout

function in this function google account who already signed in application will remove

and after remove the function will navigate the screen to the login screen.

The function will put on the button signOut in user page, and will automatically signOut

from the application.

 When user doing consultation with doctor the list of the doctor will show in list

widget and get the data from controllers, the controllers called getAllUsers() this

Future<void> firstInitialized() async {

 await autoLogin().then((value) {

 if (value) {

 isAuth.value = true;

 }

 });

Future<void> logout() async {

 await _googleSignIn.disconnect();

 await _googleSignIn.signOut();

 Get.offAllNamed(Routes.LOGIN);

}

Figure 5.27. initialized autoLogin function in controller58

Figure 5.28 logOut function in controller59

65

function will take all specific user data in database and the user’s data can process to

the list.

 This application able to change username and status these features get controlled by

function called changeProfile()in controllers. This function can change the data that has

been provided by the previous google account’s data.

Stream<List<UsersModel>>getAllUsers()=>

 collectionReference.where("role", isEqualTo: filter

data).snapshots().map((query) =>

 query.docs.map((item) =>

UsersModel.fromMap(item)).toList()

);

void changeProfile(String name, String status) {

 String date = DateTime.now().toIso8601String();

 CollectionReference users = firestore.collection('users');

 users.doc(_currentUser!.email).update({

 "name": name,

 "keyName": name.substring(0, 1).toUpperCase(),

 "status": status,

 "lastSignInTime":

userCredential!.user!.metadata.lastSignInTime!.toIso8601String(),

 "updatedTime": date,

 });

 user.update((user) {

 user!.name = name;

 user.keyName = name.substring(0, 1).toUpperCase();

 user.status = status;

 user.lastSignInTime =

userCredential!.user!.metadata.lastSignInTime!.toIso8601String();

 user.updatedTime = date;

 });

 user.refresh();

 Get.defaultDialog(title: "Success", middleText: "Change Profile

success");

}

void updateStatus(String status) {

 String date = DateTime.now().toIso8601String();

 CollectionReference users = firestore.collection('users');

 users.doc(_currentUser!.email).update({

 "status": status,

 "lastSignInTime":

userCredential!.user!.metadata.lastSignInTime!.toIso8601String(),

 "updatedTime": date,

 });

 // Update model

 user.update((user) {

 user!.status = status;

 user.lastSignInTime =

userCredential!.user!.metadata.lastSignInTime!.toIso8601String();

 user.updatedTime = date;

Figure 5.29. getAllUsers function to get specific data in the database60

Figure 5.30 Update User Function61

66

In figure 5.30. the function updates the users’ s database, the function will read

the database first and then then in the function called “.update()” to update the data in

firebase, and then in this function the data "updatedTime"will updated automatically,

after update done the dialog widget will pop up and give message to user if update user

already done and success.

After update name and status, this application can update photo, this application

using upadateUrl function in controller.

 In figure 5.32. there is function for select image for the gallery and then upload it

void updatePhotoUrl(String url) async {

 String date = DateTime.now().toIso8601String();

 // Update firebase

 CollectionReference users = firestore.collection('users');

 await users.doc(_currentUser!.email).update({

 "photoUrl": url,

 "updatedTime": date,

 });

 // Update model

 user.update((user) {

 user!.photoUrl = url;

 user.updatedTime = date;

 });

 user.refresh();

 Get.defaultDialog(

 title: "Success", middleText: "Change photo profile

success");

}

void selectImage() async {

 try {

 final checkDataImage =

 await imagePicker.pickImage(source: ImageSource.gallery);

 if (checkDataImage != null) {

 print(checkDataImage.name);

 print(checkDataImage.path);

 pickedImage = checkDataImage;

 }

 update();

 } catch (err) {

 print(err);

 pickedImage = null;

 update();

 }

}

Figure 5.31 updatePhotoUrl function in controller63

Figure 5.32 selectImage function in controllers 64

67

 to the firebase and then take the URL name. the selectImage function get the image

URL and then send to the updatePhotoUrl function to replacte the newest URL from

before.

Doing the consultation like chat with the doctor, but the first person to star contact

is the user not the doctor, doctor just wait the user chat and start consultation with them.

The consultation room or chat room build from ListView.builder(), but to make the list

of the chat, the first is make the connection with other user.

void addNewConnection(String friendEmail) async {

 final docChats =

 await

users.doc(_currentUser!.email).collection("chats").get();

 if (docChats.docs.length != 0) {

 final checkConnection = await users

 .doc(_currentUser!.email)

 .collection("chats")

 .where("connection", isEqualTo: friendEmail)

 .get();

 if (checkConnection.docs.length != 0) {

 flagNewConnection = false;

 chat_id = checkConnection.docs[0].id;

 } else {

 flagNewConnection = true;

 }

 } else {

 flagNewConnection = true;

 }

Figure 5.32 selectImage function in controllers65

68

if (chatsDocs.docs.length != 0) {

 // terdapat data chats (sudah ada koneksi antara mereka

berdua)

 final chatDataId = chatsDocs.docs[0].id;

 final chatsData = chatsDocs.docs[0].data() as Map<String,

dynamic>;

 await users

 .doc(_currentUser!.email)

 .collection("chats")

 .doc(chatDataId)

 .set({

 "connection": friendEmail,

 "lastTime": chatsData["lastTime"],

 "total_unread": 0,

 });

 final listChats =

 await

users.doc(_currentUser!.email).collection("chats").get();

 if (listChats.docs.length != 0) {

 List<ChatUser> dataListChats = List<ChatUser>.empty();

 listChats.docs.forEach((element) {

 var dataDocChat = element.data();

 var dataDocChatId = element.id;

 dataListChats.add(ChatUser(

 chatId: dataDocChatId,

 connection: dataDocChat["connection"],

 lastTime: dataDocChat["lastTime"],

 total_unread: dataDocChat["total_unread"],

));

 });

 user.update((user) {

 user!.chats = dataListChats;

 });

 } else {

 user.update((user) {

 user!.chats = [];

 });

 }

 chat_id = chatDataId;

 user.refresh();

}

Figure 5.34. If already have connections in chat collection66

69

else {

 // buat baru , mereka berdua benar2 belum ada koneksi

 final newChatDoc = await chats.add({

 "connections": [

 _currentUser!.email,

 friendEmail,

],

 });

 await chats.doc(newChatDoc.id).collection("chat");

 await users

 .doc(_currentUser!.email)

 .collection("chats")

 .doc(newChatDoc.id)

 .set({

 "connection": friendEmail,

 "lastTime": date,

 "total_unread": 0,

 });

 final listChats =

 await

users.doc(_currentUser!.email).collection("chats").get();

final updateStatusChat = await chats

 .doc(chat_id)

 .collection("chat")

 .where("isRead", isEqualTo: false)

 .where("penerima", isEqualTo: _currentUser!.email)

 .get();

updateStatusChat.docs.forEach((element) async {

 await chats

 .doc(chat_id)

 .collection("chat")

 .doc(element.id)

 .update({"isRead": true});

});

await users

 .doc(_currentUser!.email)

 .collection("chats")

 .doc(chat_id)

 .update({"total_unread": 0});

Figure 5.35. Make new connection in Chat collections67

Figure 5.36 UpdateStatus read or unRead in controller68

70

 In the figure 5.35. there is function make a connection from one user to another

user. The user who wants to make connection to the doctor will take the doctor email,

then make the collection in the database called “chats”, in this collection will show the

id and the name of connection the user and the doctor, after that, the user able to start

consultation to the doctor, because the connection already made and doing well.

void newChat(String email, Map<String, dynamic> argument, String chat) async {

 if (chat != "") {

 CollectionReference chats = firestore.collection("chats");

 CollectionReference users = firestore.collection("users");

 String date = DateTime.now().toIso8601String();

 await chats.doc(argument["chat_id"]).collection("chat").add({

 "pengirim": email,

 "penerima": argument["friendEmail"],

 "msg": chat,

 "time": date,

 "isRead": false,

 "groupTime": DateFormat.yMMMMd('en_US').format(DateTime.parse(date)),

 });

 Timer(

 Duration.zero,

 () => scrollC.jumpTo(scrollC.position.maxScrollExtent),

);

 chatC.clear();

 await users

 .doc(email)

 .collection("chats")

 .doc(argument["chat_id"])

 .update({

 "lastTime": date,

 });

 final checkChatsFriend = await users

 .doc(argument["friendEmail"])

 .collection("chats")

 .doc(argument["chat_id"])

 .get();

 if (checkChatsFriend.exists) {

 final checkTotalUnread = await chats

 .doc(argument["chat_id"])

 .collection("chat")

 .where("isRead", isEqualTo: false)

 .where("pengirim", isEqualTo: email)

 .get();

 total_unread = checkTotalUnread.docs.length;

 await users

 .doc(argument["friendEmail"])

 .collection("chats")

 .doc(argument["chat_id"])

 .update({"lastTime": date, "total_unread": total_unread});

 } else {

 await users

 .doc(argument["friendEmail"])

 .collection("chats")

 .doc(argument["chat_id"])

 .set({

 "connection": email,

 "lastTime": date,

 "total_unread": 1,

 });

 }

 }

}

 Figure 5.37. newChat function in controllers69

71

 In figure 5.37. the user starts the chat and then the system will make new data in

firebase according the sender, receiver, and the time. In this function sender and

receiver will have same “Chats” collection with same ID. The chat collection will have

the message from sender to receiver so that message will be show up it the chat room.

After finish consultation the doctor can give the track record to the user, only doctor

can be giving the track record to the user, the user just can see and read the track record.

if(docTrack.docs.length != 0){

 final checkConnection = await users

 .doc(_currentUser!.email)

 .collection("trackrecord")

 .where("connection", isEqualTo: friendEmail)

 .get();

 if(checkConnection.docs.length != 0){

 //already have connection

 flagNewConnection = false;

 track_id = checkConnection.docs[0].id;

 }else{

 //make new connection

 flagNewConnection = true;

 }

}else{

 //never have connection, make new connection

 flagNewConnection = true;

}

if(flagNewConnection){

 final trackDocs = await track.where(

 "connections",

 whereIn: [

 [_currentUser!.email,

 friendEmail],

 [

 friendEmail,

 _currentUser!.email

]

]).get();

 if(trackDocs.docs.length != 0){

 //already have connection and track

 final trackDataId = trackDocs.docs[0].id;

 final trackData = trackDocs.docs[0].data() as Map<String,

dynamic>;

 await users

 .doc(_currentUser!.email)

 .collection('trackrecord')

 .doc(trackDataId)

 .set({

 "connection":friendEmail,

 "lastTime": trackData["lastTime"],

 });

Figure 5.38. Check tarckRecord in trackRecord Collection70

72

In figure 5.38 and figure 5.39 the code explains about the trackRecord

function, first the system will check if there is any connection already build up by the

user to doctor, if not the connection will made automatically and set up on the

database.

if(listTrack.docs.length != 0){

 List<TrackUser> dataListTrack = List<TrackUser>.empty();

 listTrack.docs.forEach((element) {

 var dataDocTrack = element.data();

 var dataDocTrackId = element.id;

 dataListTrack.add(TrackUser(

 trackId: dataDocTrackId,

 connection: dataDocTrack["connection"],

 lastTime: dataDocTrack["lastTime"],

));

 });

 user.update((user) {

 user!.track = dataListTrack;

 });

 }else{

 user.update((user) {

 user!.track = [];

 });

 }

 track_id = trackDataId;

 user.refresh();

}

Figure 5.39. if already have connection of trackRecord in trackRecord Collection71

73

{ final newTrackDoc = await track.add({

 "connections":[

 _currentUser!.email,

 friendEmail,

]

 });

 await track.doc(newTrackDoc.id).collection("trackrecord");

 await users

 .doc(_currentUser!.email)

 .collection('trackrecord')

 .doc(newTrackDoc.id)

 .set({"connection" : friendEmail,

 "lastTime": date

 });

 final listTrack = await

users.doc(_currentUser!.email).collection("trackrecord").get();

 if(listTrack.docs.length != 0){

 List<TrackUser> dataListTrack = List<TrackUser>.empty();

 listTrack.docs.forEach((element) {

 var dataDocTrack = element.data();

 var dataDocTrackId = element.id;

 dataListTrack.add(TrackUser(

 trackId: dataDocTrackId,

 connection: dataDocTrack["connection"],

 lastTime: dataDocTrack["lastTime"],

));

 });

 user.update((user) {

 user!.track = dataListTrack;

 });

 }else{

 user.update((user) {

 user!.chats = [];

 });

 }

 track_id = newTrackDoc.id;

 user.refresh();

 }

}

print(track_id);

Figure 5.40 Build trackRecord in the database72

74

5.2.3. Models

In this application there are 2 models the users models and the chats models,

The models contains variables that have a relationship with the user or chat, so that

when user or chat data is updated, there is no need to bother writing all the variables to

be entered.

UsersModel usersModelFromJson(String str) =>

 UsersModel.fromJson(json.decode(str));

String usersModelToJson(UsersModel data) => json.encode(data.toJson());

class UsersModel {

 UsersModel({

 user data

 });

user data

 factory UsersModel.fromJson(Map<String, dynamic> json) => UsersModel(

 user data In json

);

 Map<String, dynamic> toJson() => {

user data toJson

 };

 UsersModel.fromMap(DocumentSnapshot data){

 user data in document snapshot

 }

class ChatUser {

 chat user data

 });

 chat user data

 factory ChatUser.fromJson(Map<String, dynamic> json) => ChatUser(

 chat user data from json

);

 Map<String, dynamic> toJson() => {

 chat user data to json

 };

}

class TrackUser {

 TrackUser({

 track user data

 });

 track user data

 factory TrackUser.fromJson(Map<String, dynamic> json) => TrackUser(

 track user data from json

);

 Map<String, dynamic> toJson() => {

 track user data toJson

 };

}

Figure 5.41. Users Models74

75

Figure 5.41 there is user models. To make developer easy input data to database, so the

author just calls the user models function so the data will be set automatically and decrease

the error of typing when code the program.

The chat models will use to make chat construction when make data chat in the database.

Chats chatsFromJson(String str) =>

Chats.fromJson(json.decode(str));

String chatsToJson(Chats data) => json.encode(data.toJson());

class Chats {

 Chats({

chat data

 });

chat data

 factory Chats.fromJson(Map<String, dynamic> json) => Chats(

 connections:

List<String>.from(json["connections"].map((x) => x)),

 chat: List<Chat>.from(json["chat"].map((x) =>

Chat.fromJson(x))),

);

 Map<String, dynamic> toJson() => {

 "connections": List<dynamic>.from(connections!.map((x)

=> x)),

 "chat": List<dynamic>.from(chat!.map((x) =>

x.toJson())),

 };

}

class Chat {

 Chat({

chat data

 });

 chat data

 factory Chat.fromJson(Map<String, dynamic> json) => Chat(

chat data from json

);

 Map<String, dynamic> toJson() => {

chat data toJson

 };

}

Figure 5.42. Chat Models75

76

CHAPTER VI

SYSTEM DEVELOPMENT

1.7. Testing Environment

Testing environment is an explanation of the device that will be used on the mobile

application testing, there are the things that used for testing:

1.1.1. Mobile Application

The mobile application test with 2 ways, the first is using emulator and then using

mobile phone, the testing device have a specification as follow:

1. Samsung A50S

a. Processor Exynos 9611

b. RAM 4GB

c. Android 11

2. Pixel 3a (emulator)

a. Android 11

1.1.2. Laptop

The laptop used to monitor the database, if the database already inputted or not

1. Laptop MSI

a. Processor i5-gen 10

b. OS windows

77

1.8. Testing Result

This final project using prioritizes Blackbox testing to focusing in the application system

functionality.

1.1.3. Black Box Testing Scenario

This method is useful for viewing and reviewing the usability of the application

and also the course of the input or output process in the application.

Table 6.1. Black Box Testing8

No Features Scenario Expected Result Result

1 Login User press login

button in the login

screen

User successfully

login to the

application and go to

the home page

As Expected,

 Doctor press login

button in the login

screen

Doctor successfully

login to the

application and go to

the home page

As Expected,

2 Search

Doctor

User press search

button in the home

page, after that user

go the category page

and choose the

category after that

choose the doctor

and directly go to the

User can find the

doctor and start the

consultation

As Expected,

78

consultation room or

chat room

3 Consultation User chat the doctor

and then the doctor

reply the user

Users can send a

message to the doctor

and then the doctor

can read the message

and so on

As Expected,

4 Track

Record

After finishing doing

consulting, the

doctor writes the

track record on the

track record page,

and then the user can

read the track record

on the track record

page.

A doctor can write the

track record to the

user and the user can

read the track record.

As Expected,

5 Change

Profile

User and doctor

change their name

and their status in

the profile screen.

The user and doctor

can change their name

and status after that

show pop up message

success.

As Expected,

6 Change

Profile

Picture

User and doctor

change their profile

The user and doctor

can change their

As Expected,

79

picture in the profile

screen

profile picture in the

profile screen

7 Search

Nearby

doctor

User can search

nearby doctor,

hospital and

drugstore in the

application

The user can find the

nearby doctor in the

application

As Expected,

8 Change role

to be a

doctor

User can register to

be a doctor, if user

input their certificate

and fill the role

options.

The user can change

their role in the

application by

uploading the

certificate and fill the

role in the application

As Expected,

80

CHAPTER VII

CONCLUSION AND FUTURE WORK

7.1. Conclusion

This final project aims to provide online consulting services using a mobile application to

make it easier for people to get consultations instantly and can be carried out anywhere, this

application is also free so users don't have to worry about the consultation fees that will be

incurred.

The framework used is flutter which provides a lot of convenience in making this

application, because flutter has a lot of libraries that can be used in the application creation

process. In this application it takes about 16 libraries to finish the system needs to making this

application.

7.2. Future Work and Suggestion

for the future work and future development in this final project, there are some features to

improve this final project and suggestion:

1. User who wants access this application must using smartphone

2. Add doctors, so the number of medical personnel in this application can increase

3. Add new features to the user and to the doctor so the application can grow up such as

video call or call.

81

REFERENCES

[1] Boyce, Tammy, Brown, Chris.(2019). economic and SOCIAL impacts and benefits of

health systems

[2] Islam, Md. Rashedul.(2010). Mobile Application and Its Global Impact

[3] Wu, Wenhao.(2018). React Native vs Flutter, cross-platform mobile application

frameworks

[4] Khawas, Chunnu.(2018). Application of Firebase in Android App Development-A Study.

[5] Khasanah, R. L., Kesuma, C., & Wijianto, R. (2018). Sistem Informasi Pelayanan

Kesehatan Online Berbasis Web Pada PMI Kabupaten Purbalingga, 1(1), 74-75.

[6] Syukron, Akhmad. and Noor Hasan. 2015. Perancangan Sistem Informasi Rawat Jalan

Berasis Web Pada Puskesmas Winog. ISSN: 2338-9761. Yogyakarta: Bianglala Informatika

Vol. 3, No. 1, Maret 2015: 28–34. Diambil dari: http://ejournal.bsi.ac.id/jurnal/index.php/Bi

anglala/article/view/574/465.

[7] Setiyawati, Erwin dan Sardiarinto. 2016. Perancangan Sistem Informasi Berbasis Web

Studi Kasus: KSU BMT Al-Ikhwan Yogyakarta. Yogyakarta: Indonesian Journal on Computer

and Information Technology Vol. 1, No. 1 Mei 2016: 34–41. Diambil dari:

http://ejournal.bsi.ac.id/jurnal/index.php/ijcit/ article/view/417/317.

[8] Levey, Samuel and Loomba, Paul, 1973, Health Care Administration: “A Managerial

Prespectiv”. Dalam: Azwar, Azrul, 1996, Pengantar Ilmu Kesehatan Masyarakat, Jakarta:

FKUI

[9] Taufik, Andi dan Ermawati. 2017. Perancangan Sistem Informasi Pemesanan Pentas Seni

Berbasis Web Pada Sanggar Seni Getar Pakuan Bogor. ISSN: 2461-0690. Jakarta: IJSE –

82

Indonesian Journal on Software Engineering Vol. 3, No. 2: 1–7. Diambil dari:

http://ejournal.bsi.ac.id/jurnal/index.php/ijs e/article/view/2812/1836.

[10] Jati. K.D.N(2017).Rancang Bangun Aplikasi Konsultasi Kesehatan Online, 1(1), 2

